Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-Lattice Boltzmann method

Wu, J. and Shu, C. and Zhang, Y.H. (2010) Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-Lattice Boltzmann method. International Journal of Numerical Methods for Heat and Fluid Flow, 62 (3). pp. 327-354. ISSN 0961-5539

PDF (Zhang_YH_-_strathprints_-_Simulation_of_incompressible_viscous_flows_around_moving_objects_of_immersed_Boundary-Lattice_Boltzmann_method_Jan_2010.pdf)

Download (459kB) | Preview


A variant of immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this paper to simulate incompressible viscous flows around moving objects. As compared with the conventional IB-LBM where the force density is computed explicitly by Hook's law or the direct forcing method and the non-slip condition is only approximately satisfied, in the present work, the force density term is considered as the velocity correction which is determined by enforcing the non-slip condition at the boundary. The lift and drag forces on the moving object can be easily calculated via the velocity correction on the boundary points. The capability of the present method for moving objects is well demonstrated through its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried out to exhibit the ability of the present method for implementing the elastic boundary condition. It was found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than the flapping rigid airfoil.