Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Increasing transmission efficiency with advanced signal processing

Glesk, I. and Andonovic, I. and Michie, C. (2010) Increasing transmission efficiency with advanced signal processing. In: International Conference on Renewable Energies and Power Quality (ICREPQ’10), 2010-03-23 - 2010-03-25.

[img]
Preview
PDF (strathprints016687.pdf)
strathprints016687.pdf

Download (199kB) | Preview

Abstract

Optical CDMA is an advanced and flexible communication technology with a potential to offer very energy efficient and highly scalable networking. In addition it can also deliver increased physical layer privacy and on-demand bandwidth sharing management. We have developed, extensively investigated, and experimentally demonstrated highly scalable approach to incoherent OCDMA which can very efficiently increase the number of simultaneous users. In addition, the introduction of an advanced photonic signal processing results in an overall system power budget improvement by nearly 3dB. Error-free operation with the BER less than 10-12 was achieved. We have also shown that with demonstrated approach we can dramatically improve number of simultaneous network users (up to ten times) while keeping the related hardware count unchanged. By comparing this results to DWDM concept, this substantial increase in number of simultaneous users did not require to add any additional wavelength laser sources and was achieved by employing just three communication wavelengths.