

Whitfield, R.I. and Duffy, A.H.B. and Wu, Zichao and Meehan, Joanne and Vassalos, Dracos and Conway,
Alistair and York, Philip (2007) A virtual environment to support the distributed design of large
made-to-order products. In: Higher Creativity in Virtual Teams. Idea Group Inc. Pbs, pp. 299-320.

http://strathprints.strath.ac.uk/16624/

Strathprints is designed to allow users to access the research output of the University of
Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. You may not engage in further
distribution of the material for any profitmaking activities or any commercial gain. You
may freely distribute both the url (http://strathprints.strath.ac.uk) and the content of this
paper for research or study, educational, or not-for-profit purposes without prior
permission or charge. You may freely distribute the url (http://strathprints.strath.ac.uk)
of the Strathprints website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://strathprints.strath.ac.uk/16624/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk

A VIRTUAL ENVIRONMENT TO SUPPORT THE
DISTRIBUTED DESIGN OF LARGE MADE–TO–ORDER

PRODUCTS
R.I.WHITFIELD†, A.H.B.DUFFY†, Z.WU†, J.MEEHAN†, D.VASSALOS‡,
A.P.CONWAY†, P.YORK‡

†CAD Centre ‡Naval Architecture and Marine Engineering
University of Strathclyde, University of Strathclyde
James Weir Building, Henry Dyer Building
75 Montrose Street, 100 Montrose Street
Glasgow, G11XJ, UK. Glasgow, G40LX, UK.

Abstract. An overview of a virtual design environment (virtual platform) developed as
part of the European Commission funded VRShips-ROPAX (VRS) project is presented.
The main objectives for the development of the virtual platform are described, followed
by the discussion of the techniques chosen to address the objectives, and finally a
description of a use-case for the platform. Whilst the focus of the VRS virtual platform
was to facilitate the design of ROPAX (roll-on passengers and cargo) vessels, the
components within the platform are entirely generic and may be applied to the
distributed design of any type of vessel, or other complex made-to-order products.

1 Introduction

Despite being faced with a situation where computers were generally being used for the
processing of data, Mann and Coons identified the possibility of using computers as “partners
in the creative process” to facilitate the hypothesis exploration process and consequently
produce an escalation of “scientific creativity” (Mann and Coons, 1965). They stated:

“It is clear that what is needed if the computer is to be of greater use in the creative
process, is a more intimate and continuous interchange between man and machine. This
interchange must be of such a nature that all forms of thought that are congenial to man,
whether verbal, symbolic, numerical, or even graphical are also understood by the
machine and are acted upon by the machine in ways that are appropriate to man’s
purpose”. (Mann and Coons, 1965, p.3)

To achieve Mann and Coons’ vision requires a fundamental understanding of the creative
process as well as being able to develop computer tools to attain human and computer
symbiosis.

Whilst the vision of a shared understanding between man and machine of all forms of thought
has not yet been realised, Cummings discussed the degree to which automation (provided by
intelligent decision support systems) could be introduced within the decision process,
indicating where computers may be utilised in facilitating this shared understanding
(Cummings, 2004). Cummings cites Fitts’ list (Chapanis et al., 1951) as representing the
respective strengths of humans and computers within the decision making process. Humans
are regarded as being better at: perceiving patterns; improvising and using flexible
procedures; recalling relevant facts; reasoning inductively; and exercising judgement, whereas
computers are regarded as being better at: responding quickly to control tasks; repetitive and
routine tasks; reasoning deductively; and handling many complex tasks simultaneously
(Chapanis et al., 1951).

Despite not being included within Fitts’ list, Cummings acknowledges an increasing need for
the use of computational decision support to help humans navigate complex decision
problems.

The CAD Centre was established in 1986 as a research and postgraduate unit within the
Department of Design Manufacture and Engineering Management at the University of

Strathclyde. The aims of the Centre are to develop the computing technology to support a
creative design partnership between man and machine, and to deliver the underlying
technology, techniques and approaches to industry. To achieve these aims, the CAD Centre
has evolved research education and technology transfer programmes.

This paper briefly discusses one of the initial visions of the CAD Centre: the Intelligent
Design Assistant (IDA) which addresses both the views of Mann and Coons whilst
considering how to leverage the benefits of both human and computer within this partnership.
Section 3 discusses how the IDA vision has been realised within a virtual design environment
that provides management support for the life-phase design of ships – the VRS virtual
platform. The development challenges are discussed within Section 4, and it’s use within the
context of the design of a ROPAX vessel is described within Section 5.

2 The Intelligent Design Assistant philosophy

A characterisation of Mann and Coons’ design assistance philosophy is that of the Intelligent
Design Assistant. Figure 1 illustrates some key complementary roles that a designer and an
IDA are proposed to play within the scenario of intelligent CAD.

In this scenario, designers are initiators of a discourse, they retain authority and control over
the progress of the interaction with the IDA, and have ultimate responsibility for the
correctness of results. They are able to express the nature of the problem, to describe concepts
to be explored, and to justify their judgements. In addition, they hypothesise, refer to past
experience, and apply a range of modelling tools. In contrast, the IDA is the active partner to
the designer. It is a source of design expertise and past experience that complements a
designer’s memory. It is able to develop an understanding of a problem and description of
concepts, assess the feasibility of concepts, identify the implications of concept changes,
suggest possible solution paths, and can assume much of the burden of mundane and
repetitive analysis tasks. The strengths indicated within Fitts’ list of the human are
represented within the designer: perceiving patterns to express the nature of the problem;
recalling relevant facts to describe concepts to be explored; and exercising judgement and
reasoning inductively to justify their judgements. The strengths of the computer are
represented within the IDA: reasoning deductively to identify the implications of concept
changes; responding quickly to control tasks to suggest possible solution paths; and assuming
the burden of repetitive and mundane analysis tasks.

Designer:
• Control
• Define
• Direct
• Inquire
• Judge
• Question
• Specify

IDA:
• Adapt
• Calculate
• Evolve
• Explain
• Guide
• Learn
• Model

“Intelligent
Interface”

Figure 1. Intelligent Design Assistant (Copyright University of Strathclyde).

Various implementations of aspects of the IDA vision have been produced that represent
different combinations of interactions between the designer and the IDA (Zhang et al., 1997),
(Yan et al., 2002), (Guan et al., 1997), (Manfaat, 1998). These implementations have in
general had specific applications for the focus of interaction between the designer and the
IDA. The IDA vision has been implemented within a virtual design environment that provides
management support for the life-phase design of ships – the VRS virtual platform. Whilst the
focus for implementation of this platform was ship design, the platform has however been
developed to be applicable to any domain where the management of complexity is an issue

such as design within the made-to-order sector. The issue of complexity within the co-
ordination of distributed design for example has been considered by Duffy, to consist of
complexity of the following elements: the artefact being designed; the design activity itself;
the actors involved; the design decision making process; the considerations impinging on
design, and the knowledge and sources used and generated (Duffy, 1995). The VRS virtual
platform aims to provide some level of support for all of these different types of complexity.

3 VRShips-ROPAX (VRS) & the VRS virtual platform

VRShips-ROPAX (VRS) was a pan European maritime project funded under the ‘competitive
and sustainable growth’ theme of the 5th Framework in European Research. The strategic
objective of VRS was to integrate information technology into the life cycle of a product, to
sustain competitiveness through improving knowledge and technological skills, thus,
following the previously successful pattern of other European industries (e.g. aerospace
industry). The project focused upon integrating current effort dispersed throughout Europe to
provide a standardised platform upon which a variety of maritime industries could function.
Its aim was to support European Maritime Industries to:

• Maintain and improve their position against worldwide competition by improving
their knowledge and technological skills.

• Combine competitiveness/profitability with safety and environmental protection.

• Look at technology and innovation as the main way to survive in the global
international market.

The project was based on an industry partnership of 36 different groups within 34 different
organisations from academic institutes, marine consultancies, marine research organisations,
naval architects, ship builders and operators, port authorities and a standards organisation.
Thus, the constituency supported and represented the requirements of the European maritime
spectrum. The two main deliverables were a ‘generic virtual platform’ and a ‘ship platform of
critical technologies’.

Whilst the focus here is towards the virtual platform, it is worth briefly mentioning the ship
platform. A number of demanding and conflicting requirements were established for the
design of the ship platform. Whilst the requirements were not as extensive as would be
expected from a ship-owner, the requirements were chosen to push the boundaries of
conventional ROPAX vessel design, with the resulting design representing an innovative leap.
One aim within the VRShips-ROPAX project was to use conventional design tools to
generate a design that satisfied the requirements, and subsequently repeat the process using
the same tools within the context of the virtual platform to compare both the process of
creating the design, and the design itself. The requirements for the design were: 2000
passengers, 400 cabins, 1.5 kilometres of vehicle lanes, 2000 nautical mile range, and 38 knot
service speed. Individually, these requirements do not represent a difficult design problem;
however the combination of passengers, cabins and vehicle lanes (which would normally
result with a conventional hull shape), and the service speed (which would normally result
with a slender hull shape – typically seen within warships) presented a situation where
creativity was needed in order satisfy all requirements.

As well as providing a comparison between the conventional design approach and the
integrated design approach, the design would be used to produce a 1/20 scale model of the
ROPAX vessel for testing, evaluation and comparison with the computational models used to
simulate the performance, as well as to allow the testing of ship critical technologies, such as
different propulsion systems for example.

3.1 VRS project structure
In order to understand the challenges associated with the development of the VRS virtual
platform it is necessary to provide an overview of the individual components of the platform
and how they fit together.

3.2 Platform overview
The approach adopted within the design of the virtual platform was to carry out an iterative
process of development, test, implementation and evaluation leading towards the production
of a complete virtual platform. The platform consisted of: tools and techniques to facilitate
integration; a common model database for the storage of ship-product data; a “virtual”
interface to the platform, the product and the process; an inference engine for the management
of data dependency information; a process control tool for the co-ordination of process,
activities and resources; and a “simulation engine” representing the design and simulation
tools being integrated. The relationships between the components of the virtual platform can
be seen within Figure 2.

User Interface

Common Model

Generic Wrapper

Simulation Tool

AVPro

Local
Model In

pu
t C

on
ve

rte
r

O
ut

pu
t C

on
ve

rte
r

SSL Com

Generic Wrapper

Design Tool

Tribon

Local
ModelIn

pu
t C

on
ve

rte
r

O
ut

pu
t C

on
ve

rte
r

SSL Com

Generic Wrapper

Design Tool

AVPro

Local
ModelIn

pu
t C

on
ve

rte
r

O
ut

pu
t C

on
ve

rte
r

SSL Com

Process Control Tool

Resources

Requirements

Processes

S
S

L
C

om

SSL Com

Inference Engine

Dependency Maps

S
S

L
C

om

Performance Analysis

Performance Models

S
S

L
C

om

Common Model
Communication

Virtual Platform
Communication

Figure 2. VRS virtual platform components (Copyright University of Strathclyde).

“Wrapping” was required for existing, and new design and simulation tools in order to
interface with the integration framework and cater for platform (hardware and software)
independence. A common model containing consistent ship product data was developed to
capture the main knowledge, information and geometry of the virtual ship. The interaction
between the tools, their local models, and the common model was managed through version
control, consistency/constraint based management and conflict resolution techniques. The
application of life-phases process knowledge/approaches upon the virtual model was
investigated through the development of a process control tool, which provides a means to
control and evaluate the “behaviour” of the integrated platform as well as providing support
for the life-phases of a ship. The interaction with the platform was realised through a virtual
environment, which concentrates upon techniques and approaches to develop real time,
virtual interaction. The performance data generated from the simulation engine tools was
analysed to provide a means to determine and optimise the overall performance and
uncertainty of the virtual ship. Since the performance-modelling tool is not fundamental to the
operation of the platform, further discussion of the development of the tool is omitted. All
development within the project was generic in nature (other than the ship product data within
the common model, and the knowledge within the simulation engine) so that the results can
be applied to any industrial domain or discipline. The virtual platform therefore enables

extensive simulations, real time virtual interactions,
performance analysis and life-phase support to be
undertaken irrespective of the application domain or
ship type.

3.3 Virtual platform objectives
The functionality and objectives of the main
components within the VRS virtual platform were as
follows:

Integration. The integration aim was to deliver a
strategy and architecture to guide the integration
activities of the common model, virtual interaction,
inference engine, process modelling and control,
simulation engine and performance analysis and
reliability components. The main objective of the
integration framework is therefore to deliver a flexible
protocol and communication mechanism that enables
these disparate systems to integrate and co-ordinate
their functionality. To achieve these objectives
consideration therefore needs to be given to the
platforms and programming languages that both the
individual platform components and the integrated
design and simulation tools use with the aim of
developing a specification for the integration that was
platform and programming language independent.
Since the platform is distributed, consideration needs
to be made to ensure efficient and effective
communication of design information between the
disparate entities.

Common model. The common model is a database
that provides a consistent representation of the data
defining the ship systems (ship product model) and
external environment (sea state, routes, port facilities),
and holds the basic (and common) geometry and
information required by each of the integrated
simulation engine tools irrespective of the tools’
native data formats. The aim when defining the data
specifications and schemas for the common model is
to consider the functional requirements of the life-
phase process models as well as the requirements of
the integrated tools in order to ensure that the
common model supports the design requirements of
the user, as well as facilitating data transfer within
simulation and real-time rendering programs
developed within the virtual interaction component for
example. Cover for the whole lifecycle of the vessel
should be provided, from initial design to disposal;
hence the data contained within it should be
applicable across life-phases.

Virtual interaction. The common model allows
distributed manipulation of the ship product model as
well as enabling the virtual environment by allowing
the development of the product model using the tools
within the simulation engine. The virtual environment

Integration component

Common model component

Virtual interaction component

ΞΜΛ;0/ ;0
/
?0
/
;0
/

Ship
Properties
Geometry
Structural
Performance
Propulsion

Sea State
Routes
Port
Facilities

3 3 3

Basic Productio Operation

STEP IGES DXF

XML-Based
Neutral Format

XML

is the interface that the users utilise in order to interact
with the virtual platform. Since the project was EU
funded, the partners and hence users of the platform
were distributed across Europe. Providing access to
the platform via the virtual interaction component
however should be extendable such that it may be
implemented either within an organisation, across
stakeholder organisations, across partner
organisations within Europe, or globally. The virtual
environment should provide functionality to enable:
multiple users; configuration and use of design and
simulation tools; access to the common model;
visualisation of common model contents; querying of
data consistency status; enactment of processes, and
use of the performance modelling tool.

Inference engine. The virtual environment enables
users to communicate and share product data and
information through the ability to remotely access,
query and modify the data contained within the
common model. The design or simulation tools being
integrated commonly have their own local model,
represented either as local files or databases in their
own native formats. Changing the data within one
tool’s local model may have multiple implications or
effects on other tools’ models. The main objective of
the inference engine is to maintain the consistency
between these various models through the
management of change propagation and conflict
resolution between multiple users irrespective of the
native formats that the individual design and
simulation tools use. The inference engine must
manage: dynamic modification to common and local
model data; the propagation of changes made to either
common or local data throughout the data dependency
network, the variation in information requirements, a
mapping of the dependencies and relationships
between data within the common model; and
consistency management and conflict resolution.

Process modelling and control. The process control
tool is a planning and enactment environment for the
co-ordination of activities within life-phase process
models. This process control tool is used to define an
initial sequence of activities, to determine an optimum
process schedule, to manage the enactment of the
tools within the virtual platform and to manage the
processes under real-time conditions. Since the main
objective of the process control tool is to demonstrate
how distributed activities within a virtual platform can
be managed and co-ordinated, there is also a
requirement that the process control tool manages the
resources that are capable of performing the activities,
as well as co-ordinating when and why they should be
undertaken.

Simulation engine. The simulation engine represents
the integrated design and simulation tools within the

Inference engine component

Process control component

Simulation engine component

Simulation engine component

? !!3 ? !! 3 33

3
2
2
3

2 3 3 2

AVPro

Early Design

Newdrift

Initial Design

Tribon

Production

…

XM

ST

XM

ST

virtual platform. These tools enable the design of the hull, general arrangement, propulsion
plant, subsystems, and simulation of the operating environment, operations, supply chain and
production. The simulation engine is capable of allowing a through life assessment, ranging
from concept development to performance trials and operational scenarios. The tools are
“wrapped” in order to enable communication with the rest of the virtual platform.

4 Development of the VRS virtual platform

This section describes the components that combine to make the virtual platform. A prototype
virtual platform was developed in order to determine the most appropriate technologies, to
establish the mode of operation of the platform with respect to usability, and determine any
shortcomings of the technologies used. Each subsection describes the results from the
prototype development where applicable along with the lessons learned from the prototype in
order to develop the next stage of the virtual platform.

4.1 Integration component
Rather than focus on the development of the communication mechanism and protocols, the
prototype integration component focussed towards the use of an existing adapter to manage
the operation of the design and simulation tools within the simulation engine. The design and
simulation tools were distributed across a network with each tool individually managed by an
adapter. The tools were mapped directly to activities within the process control tool, hence
when a process was due to be undertaken, the process control tool would communicate with
the appropriate adapter for the mapped activity to start the tool. The mapping of an activity to
a tool limited the tool’s application to single activities whereas a number of the tools were
capable of performing many design activities. The adapter was only capable of managing the
start and completion of the tool, and provided no functionality to access the common model
for example, and therefore restricted the overall integrated functionality of the platform. A
bespoke wrapper was later developed specifically designed to address the integrated
management of the design and simulation tools. From the perspective of Fitts’ list, the
integration framework aimed to respond quickly to integration control tasks. These integration
control tasks may for example be the process control tool allocating a conceptual design
activity to a designer with the integration component providing a quick response between
process control tool and designer. The prototype integration framework did however enable
three key requirements to be identified with respect to the communication of data between the
components:

• Message security. Secure Socket Layer (SSL) communication should be
implemented to utilise public/private key encryption, source authentication and data
integrity for the transfer of data between virtual platform components.

• XML message format. XML should be used as the underlying language for
communication of data between virtual platform components due to its inherent
extensibility and support throughout the IT community.

• Message validation. XML schemas should be used to automatically check that the
messages received by any of the virtual platform components conform to a defined
standard.

Existing and well-established integration technologies such as the Common Object Request
Brokerage Architecture (CORBA) were considered for the development of the integration
framework. Within this context however, CORBA would have been implemented to facilitate
the transfer of objects between the tools to be integrated, rather than enabling the insertion of
the tools within the integrated platform.

The aim of the integration framework was to create an open architecture that would enable
new simulation engine tools to be easily integrated into the platform with a minimum of
development to the tool provider (and modification to the platform) when they become

available. In order to achieve this, consideration was given for the types of data to be
communicated between the virtual platform components, the frequency of communication,
and the type of communication (synchronous/asynchronous) when designing the protocol and
communication mechanism. A functional protocol was defined based upon the Remote
Procedure Call specification of XML (XML-RPC), unifying all of the protocols within the
virtual platform into a single “generic” communication protocol – Figure 3. The protocol has
elements to indicate the “sender” and “receiver” components in order that the receiver can
check that it is a valid functional request from a valid sending component. The
“functionName” element within the protocol is used to define the function (that is mapped to
some functionality that the receiving component will perform) using the information
contained within the “params” element.

An example of the use of the protocol would be a request from the generic wrapper to the
inference engine to perform a status check on a piece of data before modification. A mapping
would exist between the requested function and functionality encoded within the inference
engine. Any number of parameters may be included within the protocol to enable the
enactment of the function by the receiver. Both the sending and receiving components must
agree in advance to the structure of the parameters, however the protocol is entirely neutral to
the programming languages and the structure of the objects that are used by each component
to represent the data.

<?xml version="1.0" encoding="UTF-8"?>
<VRSMethod>

< >Sender</ > sender sender
< >Receiver</ > receiver receiver
< >FunctionName</ > functionName functionName
< > params
 < > param
 < >Title1</ > title title
 < > value
 < >String</ > string string
 </ > value
 </ > param
 < > param
 < >Title2</ > title title
 < > value
 < > struct
 < > member
 < >Name21</ > name name
 < > value
 < >42</ > int int
 </ > value
 </ > member
 < > member
 < >Name22</ > name name
 < > value
 < >3.14159</ > double double
 </ > value
 </ > member
 </ > struct
 </ > value
 </ > param
</ > params

 </ > VRSMethod

Figure 3. XML-RPC functional protocol (Copyright University of Strathclyde).

Software was developed to enable the secure sending and receiving of XML-based
communication between virtual platform components. An Application Programme Interface
(API) was designed within the software to enable it to be integrated within each of the
necessary components within Figure 2. Due to the dynamic nature of the communication
within the virtual platform, it is difficult to predict when each component will be required to
process communication, or whether the component will be sending and receiving multiple
simultaneous communication. The communication software was therefore developed using a
multi-threaded architecture to queue and sequentially process out-going communication,
whilst allowing simultaneous prioritised processing of incoming communication.

4.2 Common model
The common model is a repository for the data that is used by the design and simulation tools
as well as for the storage of virtual platform co-ordination and management data from the

inference engine (dependency maps), process control tool (process models) and the
performance analysis and reliability tool (performance models). Three issues required
consideration within the design of the common model: storage (how to store the data),
structure (how to format the data), and coverage (what data to store). Since the common
model, may in principle be used to store and manage large amounts of complex data, to be
interactively viewed, added to and modified by a number of distributed users, the common
model component addresses Fitts’ issue of handling many complex tasks simultaneously.

These issues are however related since the selection of the storage mechanism depends upon
the structure of the data to be stored (binary, XML, object-oriented). In addition, the structure
of the data is influenced by the requirements of the tools to be integrated as well as the
requirements of the users of the platform, and therefore influences and is influenced by the
coverage. The current practices and standards used in formatting and structuring engineering
data were investigated, including the Initial Graphical Exchange Specification (IGES) and the
Standard for the Exchange of Product Model Data (STEP – ISO 10303), and the amount of
data to be modelled (complete product information models for ships have been estimated by
Catley to be of the order of between two and ten Gigabytes of data (Catley, 1999)).
Considerable effort has been thrust towards the development of ISO 10303 STEP Application
Protocols (APs) for Ship Arrangements (AP215) (2004a), Ship Moulded Forms (AP216)
(2003), Ship Structures (AP218) (2004b), Ship Mechanical Systems (AP226 which has since
been withdrawn), and Piping (AP227) (2001), – Grau (Grau, 1999). A number of occasions
have arisen however when attempts have been made to adhere to these APs with the result
that “flavours” of the standard have been required in order to utilise the structured, well-
defined and standardised data within the legacy applications (Whitfield, 2003a). The focus
when defining the coverage of the common model was therefore directed towards “the
minimum amount of information that would enable the integrated tools to share an accurate
representation of the product”. ISO 10303 Part 203 is used to define the 3D design of
mechanical parts and was used within the common model as the basis upon which to define
the geometry of any aspect of the ship product model. The selection of Part 203 also
influenced the structure of the data to be contained within the common model.

Conversion of data to and from the common to native formats was also a significant issue that
needed to be addressed, which would influence the structure of the data within the common
model as well as how easily and successfully design and simulation tools could be integrated
within the virtual platform. Having chosen to base the geometrical data within the common
model on Part 203, the focus was then to complete the definition of the structure of the data,
through the selection of an appropriate language that would facilitate conversion. EXPRESS
(ISO 10303 Part 11 and 12) was developed as a language for the definition of STEP data.
Major shortcomings of the EXPRESS reference language from a conversion viewpoint were
that it was difficult to decompose EXPRESS-based models into more manageable chunks,
and it was difficult for a human to interpret what the data within an EXPRESS file
represented. Whilst human readability is not an issue during the process of converting data, it
is certainly useful if the conversion algorithm developer can understand the concepts that are
being converted whilst producing the algorithms. Attempts to undertake the conversion
between formats have in the past faced difficulties due to the complexity and formatting of
the data, and have in certain cases required a degree of human interaction (Rando, 2001).
Research had been successfully conducted to produce a binding between STEP and XML
(ISO 10303 Part 28) and has been applied within the shipbuilding industry (Rando, 2001)
with the aim of facilitating the conversion process between the neutral STEP format and the
native tool format. It was therefore concluded that an XML mapping of STEP data provided
the most appropriate language upon which to base the storage of all data within the VRS
platform due to its extensible nature, support for conversion, and the increasing support
within the IT industry. Choosing to manage the data within the common model using XML,
facilitated the selection of a storage mechanism.

The XML:DB initiative provides standardisation for the development of specifications for the
querying, manipulation and management of data stored within XML databases. This initiative
enabled the database to be de-coupled from the rest of the virtual platform, such that the

database may be exchanged with alternative XML databases without impacting any of the
software that communicates with the database. Documents are then managed within the
database in hierarchical collections, similar to the directories within a file system.

4.3 Virtual interaction
The virtual environment represents the “window” to the VRS virtual platform. It is intended
to provide functionality to enable communication between, and use by multiple users,
configuration and use of design and simulation tools, access to the common model,
visualisation of common model contents, querying of data consistency status, enactment of
processes and use of the performance modelling tool. The focus during the development of
the prototype virtual environment was towards the production of an open architecture that
would enable the configuration and remote use of design and simulation tools, and the
visualisation of common model contents. A number of the design and simulation tools to be
integrated into the platform had the ability to visually display the data in their local models
whilst the user was operating the tool. Rather than developing and producing a new
visualisation of the common model data within the virtual environment, the prototype
environment initially attempted to enable the user interfaces of the remotely distributed tools
to be exported to the virtual environment via the Internet using Virtual Network Computing
(VNC) software. VNC enables the viewing and interaction of the desktop of a remote
machine within a window of the local machine. The use of this approach meant that design
and simulation tools could be “hosted” on remote machines, providing the facility for users to
log onto the machine through the virtual environment and interact with the tool whenever
required. New tools could be registered and integrated within the platform, and the
functionality and visualisation aspects of the tools, utilised irrespective of where either the
tool or user were geographically located, and without the need to generate any code to enable
this integration - Figure 4. The display of one of these remote machines could in principal be
exported to a number of other machines, facilitating the collaborative work of multiple users
on the same design problem using the same design or simulation tools.

Integration
C i ti
P t l
R l ti hi

Adapter

Simulation
Tool
(UK)

Adapter

Design
Tool

(Greece)

Adapter

Design
Tool

(Sweden)

Adapter

Simulation
Tool

(Denmark)

Adapter

Design
Tool

(France)

Virtual Environment
(France)

Virtual Environment
(Germany)

Virtual Environment
(Spain)

Platform
communication

VNC
communication

Figure 4. Remote export of visualization (Copyright University of Strathclyde).

The network bandwidth required to support this seamless visualisation of remote tools was
however demonstrated to be in excess of the bandwidth that was available. Various
optimisation algorithms were used within the VNC software in order to reduce the amount of
data transferred by sending regions of the display that were changing and by limiting the
number of colours that are repainted on the client display. Where this may have been adequate
for design situations, where the display does not generally rapidly change, within a simulation

situation, it was apparent that the network bandwidth could not support the refresh rates that
were required for a smooth transition between frames.

Whilst there is currently VNC software available to support the secure communication of the
encoded visualisation data, the security issues relating to the fact that the user has access to
the entire desktop of the remote machine were considered to be unsatisfactory. The approach
also raised issues relating to licensing of software – not only that used within the platform, but
of all other tools available on the desktop of the remote machine, since tools would be
available to all partners regardless of whether the user or partner has bought a license for it.

The virtual environment was therefore developed to enable tools that each individual user has
available to them locally, to be used within the virtual platform, and for these tools to be
available to the users that have registered the tool and not throughout the platform. This
change in operation and use of the design and simulation tools, had a significant impact on the
rest of the platform: the virtual environment was developed to support the use of the tool to
perform particular activities rather than as a means for distributed visualisation and
collaboration, which impacted the process control tool with respect to the management of the
users and the activities that they can perform, and not the tools that they use to perform them
with.

The virtual interaction environment was developed to allow the user to log onto the platform,
through interaction with the process control tool. Support was provided to integrate design
and simulation tools into the virtual platform through the use of the generic wrapper
configuration element. Textual communication between users of the platform was provided,
as well as interaction with the inference engine and process control tool to determine the
consistency status of data within the dependency maps and start processes for example.
Distributed collaborative design was thus facilitated by the virtual interaction component and
through the provision of interfaces to each of the individual components of the virtual
platform provided an “intelligent interface” between the designer and the platform in a similar
manner as that depicted within Figure 1.

4.4 Inference engine
The aim of the inference engine is to manage and maintain the consistency of the data within
the common model through analysis of the relationships between the data. Data that resides
within the local models of the design and simulation tools have inherent dependency
relationships with the models of other tools and with the common model. Modifying the data
within one local model may impact the models of other tools. The inference engine manages
these relationships and ensures consistency between the tools by tracking the data usage of
each of the tools and activities that are configured for integration into the virtual platform.
Since the virtual platform enables multiple users to simultaneously conduct design and
simulation activities, the inference engine also controls data access.

The inference engine automatically creates data dependency maps representing the
relationships between data within the common and local models - Figure 5. The inference
engine does not store any information relating to the values of the data items – it is only
concerned with the state of the data. Data items within the inference engine are modelled in a
hierarchical level representing the hierarchical structure of the data within the common and
local models and may therefore also be used to represent different levels of abstraction. This
hierarchical structure does not however contain any relationships across hierarchies to
represent that a change in one piece of data (the hull-form) may affect another piece of data
(the sea-keeping of the vessel). Relationships across hierarchies may be established either
manually via the virtual environment or the inference engine, or automatically during tool
integration. When a design or simulation tool is configured within the virtual platform, the
tool’s configuration contains information relating to the local and common data that will be
used as input and output to the tool. The inference engine uses this configuration information
to create a relationship between the input and output data that is used as input. In this way, a
network of relationships representing a data dependency map may be created automatically.

The inference engine has two modes of operation: an active mode through automatic
interaction with the generic wrapper, and a passive mode through manual interaction via the
virtual environment. The active mode is used whenever the user chooses to start an activity
that has been scheduled and allocated to them via the process control tool. Functionality is
provided within the active mode: for checking the status of the required data before the
activity is started to determine if it is already locked for use by another user; locking the data
if it is not already locked; automatically notifying other users of the change of the lock status
of data that they may wish to use, and the management of potential conflicts that may arise as
a result of multiple users modifying separate but related pieces of data.

Figure 5. Inference Engine – Server side (Copyright University of Strathclyde).

The inference engine also provides passive functionality, acting as a server and interacting
with the virtual environment to enable the users to query the locked or working status of data,
facilitate co-operation between users operating on related pieces of data to avoid conflicts,
attach notification triggers to data to inform the user when the state of the data changes, as
well as modification of the data dependency network.

4.5 Process control tool
The prototype process control tool was developed to manage and enact processes through the
communication with the adapters developed within the integration work package in order to
start a design tool whenever a hull-form design activity requires enactment for example.
Processes within the prototype process control tool consisted of activities that were directly
mapped to tools that were capable of performing the activity. Due to tool management
limitations of the adapter, it was not possible to provide any additional information to the tool
regarding the rationale for undertaking the activity. In addition, each tool that was integrated
within the virtual platform was mapped to an activity within a process of the process
controller. From a process perspective; the tool could only be used to perform a single
activity, whereas in reality a number of the tools were capable of performing a number of
different activities. The prototype process control tool also had no formalised modelling of the
capability of the resources that were logged onto a platform.

A resource model was created within the process control tool to enable the management of
user information and enable them to log onto the virtual platform using the virtual
environment in order to be allocated design activities – Figure 6. Resources were modelled
within the process control tool as having capability (the measured ability to perform an
activity), and commitments (information related to which activities they are currently
undertaking, and have undertaken in the past). Information is also modelled with respect to

the resource’s IP address, as well as other contact details. Within the context of the virtual
platform, the process control tool regards a resource as being an autonomous agent capable of
performing an activity, and as such manages either human or computational resources.
Whenever a tool is integrated, the user is expected to define the activity that they will perform
with the tool. This mapping is provided as part of the configuration information of the tool
within the virtual environment and not in the process control tool. Processes can therefore be
managed and co-ordinated incorporating activities at any level of abstraction. Once the
configuration is complete, the virtual environment communicates with the process control tool
to update the resource’s details with information regarding this additional capability.

Figure 6. Process Controller – resource model view (Copyright University of Strathclyde).

The process control tool can manage and enact simultaneous processes consisting of any
number of interconnected activities – Figure 7. Since the process controller is capable of
managing and enacting multiple processes simultaneously, in terms of activity allocation to
resources, it addresses a number of strengths within Fitts’ list: responding quickly to control
tasks, repetitive and routine tasks, and handling many complex tasks simultaneously. The
activities (and the process control tool) were developed using object-oriented design
procedures and are therefore not limited to the activity types defined below:

• Start Activity. The process control tool uses the start activity to determine the
starting point for the process as well as the activities that follow. Each process has
exactly one start activity that is included within each process by default and cannot be
removed.

• Design Activity. The design activity is used to define the nature of any activity that
would be allocated to a resource. Additional information is provided to the resource
regarding a description of the activity, as well as an optional list of requirements that
the resource will be expected to check to determine whether they have been satisfied
once the design activity has been completed.

• Process Activities. The process control activities can be embedded within processes
to change the state (start, stop, pause, continue) of any of the other processes.

• AND Activity. Each of the activities defined above can only have one connection
either leading into or out of the activity. The AND activity enables multiple activities
to be conducted in parallel by dividing the flow within the process, or waiting for
multiple activities to be completed by joining the flow within the process.

• OR Activity. The OR activity is used in conjunction with a conditional activity, to
indicate that the process flow will continue when any of the preceding activities are
completed.

• XOR Activity. The process control tool can manage conditions that return a logical
(true/false) result to indicate whether the condition has been satisfied such as the
requirement for example which has it’s status set by a resource when it is associated
with a design activity. The XOR activity checks the status of the condition that has
been used to define it, and directs the process flow on the basis of the outcome.
Conditional connections are used to connect the XOR conditional activity to other
activities, to indicate the process flow that would be undertaken for each outcome.

Two approaches are available to determine the most appropriate resource to perform an
activity: single activity and multi-process scheduling. Single activity scheduling considers the
request for a resource on an activity-by-activity basis. When a user configures a tool to be
integrated within the virtual platform, the virtual environment communicates with the process
control tool to register the user’s new capability. When an activity is due to be performed
using single activity scheduling, the process control tool firstly generates a list of the
resources that are capable of performing the activity. This list is then filtered to determine
which of these user are currently online, as well as which are the most efficient at performing
the activity. Single activity scheduling selects the most appropriate resource for each
individual activity, without considering the process as a whole and hence cannot guarantee
that the process lead times will be optimum.

Figure 7. Process controller – process view (Copyright University of Strathclyde).

Multi-process scheduling uses an optimisation algorithm to simultaneously consider all of the
activities within all of the active processes that require resources. Using multi-process
scheduling, the process control tool will automatically generate a schedule whenever it
attempts to start an activity that has not previously had a resource scheduled for it. Using this
approach the scheduling becomes dynamic, reacting to the changing process demands, as well
as simultaneously considering the most appropriate resources in order to minimise the lead-
times of all of the active processes. Whenever an activity is completed, the associated
scheduled resource is removed from the schedule, such that if the activity were to be repeated
due to iteration for example, the scheduling procedure would be repeated and therefore not
use the same previously scheduled resource. A shortcoming of this approach is that the
scheduling algorithm does not consider the availability of resources during working hours,
which is compounded by the fact that the resources may be distributed across various time-
zones, as well as the possible variation in the schedule and potential un-availability of a

scheduled resource some time the future. These issues could however be addressed by
continually assessing the deviation from the schedule and re-scheduling when the deviation
exceeds pre-defined limits (Whitfield et al., 2003b).

4.6 Simulation engine
The simulation engine represents all of the design and simulation tools that are integrated into
the virtual platform. These tools represent the functionality that is required to design the
ROPAX vessel from concept to detail, and simulate the performance of the ROPAX vessel
with respect to the environment, operations, supply chain and production. In order to enable
this design, the associated design and simulation tools require integration within the virtual
platform. Additional management functionality was however required within this wrapping in
order that the tool usage could be co-ordinated. This functionality was provided in the form of
a generic wrapper, consisting of two separate modules, which would be used to integrate any
of the simulation engine tools within the platform.

The focus when developing the generic wrapper was on facilitating the open architecture and
providing support for any tool irrespective of the function that the tool provides, the
programming language that it was written in, or the platform that it operates on. The
configuration module is a graphical interface that enables the generation of tool integration
information, relating to the management of input and output data, data conversion algorithms,
and design and simulation tools.

Once the configuration of the tool is complete, the associated activity becomes available for
enactment within the interface of the user’s virtual environment. Information is also sent to
the process control tool to inform it that the user is now capable of performing the configured
activity.

When an activity within a process has been scheduled to a resource, the process control tool
communicates with the virtual environment of the resource informing it that the activity needs
to be performed. The enactment module downloads the data from the common model,
converts the input data to the native format, runs the design and/or simulation tools, converts
the output data to the neutral format once the tool use is complete, and uploads the data to the
common model in accordance with the rules defined within the configuration. The enactment
module also manages communication with the inference engine to check the lock status of
any of the data that it will be using. A dialog is displayed if the required data is already in use
(and therefore locked). Alternatively, the inference engine will lock the data for the user
during the enactment of the activity.

5 Use of the VRS virtual platform

When the user starts the virtual environment component, they are presented with a login
dialog to control access to the virtual platform. The user is expected to provide information
relating to their username and password. The process control tool prohibits further access to
the platform if the details do not match those contained within an encrypted database. Once
the username and password have been validated, the process control tool registers the details
to indicate that the user is online in order that activities may be scheduled and allocated to the
user in the future.

The first time the user logs onto the platform, the virtual environment will create a new
profile, hence the user is expected to use the configuration module of the generic wrapper in
order to define the activities that the user can perform – see Section 4.6. Once the user has
completed the configuration procedure, the associated activities that have been mapped are
registered with the process control tool as new capability.

The user can visually interact with the data within the common model by selecting the
element to view (such as the general layout of the decks for example). This visual
representation of the common model data is available to all of the users of the platform in
order that every user can visualise the progress of the design irrespective of their expertise or

available tools. This representation does not however allow modification of the data in the
same way that the design and simulation tools would. The virtual environment also allows
manipulation of the data dependency maps within the inference engine, and starting of
processes within the process control tool.

When a process is started, the process control tool will firstly attempt to allocate resources to
the activities within the process that require resources using either single activity or multi-
process scheduling – see Section 4.5. Once a resource has been identified, the process control
tool will communicate with the virtual environment of the resource and allocate the activity to
them. When the activity is started, the configuration information is loaded into the generic
wrapper enactment module, which will extract the information relating to the input and output
data that the associated tool will use. The enactment module will then communicate with the
inference engine in order to establish the status of the data. If a different user has already
locked the data, the inference engine will inform the user that they may only use a copy of the
data, or alternatively defer the activity until later. If a copy of the data is used, any data that is
generated from the copy cannot be uploaded to the common model. This limitation is made to
prevent inconsistencies arising from multiple users simultaneously accessing and modifying
the same piece of data. If the data is locked, the user may interact with the inference engine
via the virtual environment to either: request notification when the lock is released; establish
which resource has locked the data and communicate with the resource in order to
collaboratively work on the data. If the data is not locked when the user starts the activity, the
inference engine will automatically lock the data, and allow the user to modify it in
accordance with the configuration. The inference engine will also check to see if any other
user has currently locked (and is therefore working on) any related data through analysis of its
data dependency maps. For example, user A may currently be using the hull-form of the ship
to conduct a damage stability analysis, whilst user Z is allocated an activity to modify the
hull-form. A relationship would exist within the inference engine between the hull-form and
the damage stability performance through the configuration of the damage stability analysis
tool by user Z. If user A makes a modification to the hull-form, it could impact the simulation
activities of user Z. The inference engine would therefore communicate with both users and
provide notification that the activities that they are performing could potentially be in conflict
with each other. Given this notification of a potential conflict, it is left up to the associated
users to ensure that the actions that they undertake do not result with an actual conflict.

Once it has been established that the data either isn’t locked, or is locked and therefore
copied, the generic wrapper enactment module will download the data from the common
model, store it in the defined locations on the user’s local machine, run the conversion
algorithms, and the pass the converted input data to the tool which is then started. The design
or simulation tool may then be used in a manner according to the requirements of the activity.
Given the nature of the VRS design problem, many of the design tools require a significant
amount (days, weeks or months) of effort in order to generate the required output. Hence
provision is provided within both the virtual environment and the generic wrapper to enable
the activity to be stopped, and re-started any number of times, without repeating the process
of checking for data locks, and downloading the data. The data that is associated with the
activity remains locked until the activity is completed.

Once the user completes the activity, the generic wrapper uploads the generated output data to
the common model, communicates with inference engine in order to release the data locks,
and informs the inference engine that the output data that the user has created has changed.
The inference engine uses this information to manage the consistency of the data within the
common model, to ensure that any changes that are made to the model are correctly
propagated, and to communicate with the process control tool to undertake appropriate
activity. The virtual environment displays a dialog to the user showing the requirements that
have been associated with the design activity by the process control tool. The user can use this
dialog to select which of the requirements that have been satisfied as a result of performing
the activity and may be used by the process control tool to take alternative action. The virtual
environment communicates with the process control tool to inform it that the activity is now
complete, as well as providing information relating to the state of the requirements. If a

requirement is not satisfied, the process control tool may either: re-direct the process to
activities that are known to affect the requirement, or ignore the failed requirement and direct
the process as planned with the knowledge that the requirement will be satisfied later.

The process control tool also has functionality to enable users of the virtual platform to attach
notes to the details of an activity once the activity is completed. This functionality enables a
user to provide precise details of the activity that they have performed. For example, it may be
necessary to modify the general arrangement if it is established that the evacuation time for
the vessel is not appropriate, and in doing so, the user responsible for modifying the general
arrangement has repositioned a bulkhead. The user can therefore attach a note to state that the
bulkhead has been repositioned, in order that any subsequent activities can consider the new
bulkhead position. Alternatively, the user may attach a note to state the reason why a certain
requirement was not satisfied. These notes are propagated throughout the processes by the
process control tool and may be added to or removed when appropriate by the allocated
resources and provides a means of directing design activity towards specific issues.

A number of evaluation scenarios were created in order to test the virtual platform during the
development of both the prototype and the current version. The most recent scenario had
users distributed across Europe in France, Greece, Sweden, and the UK, logged onto the
platform and co-ordinating their activities to demonstrate the design of a vessel, from a hull-
form concept, through to the detail design of the hull including hull-fairing, generation of the
general arrangement of the decks within the hull using the hull-form profiles at various
sections, and finally generating a simulation of the performance of the vessel with respect to
the evacuation of 2000 passengers. The focus of these demonstration scenarios was not on the
actual design, but on the operation and performance of the virtual platform in supporting the
design.

The designers were free to operate with the tools, techniques and expertise that they would
conventionally use. No constraint was placed on the designers in terms of how they would
undertake their normal duties through the virtual platform. Decision support was provided to
the designers in terms of getting the right information to the right designer at the right time.
The designers are otherwise not supported in their decision-making, with the assumption that
they are already in possession of the expertise to be able to make the right decisions. The
provision of the right information however enables the designers to make informed decisions.
The output of the conventional design approach satisfying the design requirements can be
seen within Figure 8.

Figure 8. Innovative ROPAX vessel (Copyright VRS & University of Strathclyde).

From a creativity viewpoint, the essential difference between the conventional approach and
the integrated approach arises as a result of the availability of new types of information. Since
the integrated approach allowed the inclusion of previously disparate (simulation) tools that
may not have been included within the design process, the output from these tools may be
used to influence the design. In certain circumstances this additional information can
constrain the solution space by providing a more comprehensive understanding of the
viability of the design. In doing so however it directs the designer towards the solution in a
more informed manner. Following the geometric definition of the hull envelope, the General
Arrangement (GA) may itself be constructed from “modules” from previous vessels. Given
the GA, the integrated platform allows the addition of compartmentation representing meta-
information of the topological layout of cabins, corridors and stairs for example. The output
from this compartmentation would then be automatically transferred to a tool that simulates
evacuation of passengers, the result of which would be a quantitative estimate of how long it
would take passengers to evacuate to the muster stations, as well as a qualitative view of
where the evacuation bottlenecks are (typically stairwells) - Figure 9. Whilst these
simulations are being undertaken, the conventional design activity using the GA would also
be operating in parallel. The output of the evacuation could however be used to modify the
GA, when additional design work is usually necessary within further iterative cycles to
modify the GA. The platform therefore manages the complexity of the design process
integrating simulation wherever it is appropriate, as well as the complexity of the data to
enable it to be efficiently transferred between tools, such that the output may be presented to
the designer at the right point to inform their decision-making.

Figure 9. Evacuation simulation software (Copyright Safety at Sea Ltd.)

6 Future developments and challenges

The concept of providing distributed design support has been successfully demonstrated
within the VRShips project, and will be further developed within a number of EU-funded
projects. These developments aim to enable a more dynamic aspect to this support – creating
processes on the fly and providing support on an ad-hoc basis where required. In addition,
support will be provided to processes, tasks and activities irrespective of the life-phase that
they represent, with minimal cognitive impact on the user.

One of the shortcomings of VRShips resulted from the way that process models were
managed – with the allocation of an activity to a resource (on a one to one basis) that has
registered the ability to be able to undertake it. Whilst this approach enabled process planning
and design to be undertaken within a formalised manner, activities could only be enacted once

the activities that they were dependent upon were complete. Multiple activities could be
undertaken in parallel, however no support for overlapping dependent activities was provided.

The consequences of providing this support are however significant and could form the basis
for future developments. Assuming that two dependent activities are completely overlapped,
and are therefore running in parallel, the two resources performing the activities will be
required to be made continuously aware of the actions and outcomes of each other. Changes
made to the design for example therefore require continuous broadcast to all the resources that
are affected by the change. Similarities may be drawn and techniques adopted within the
computer gaming industry whereby servers run environments that contain many users
interacting with the environment and with each other. The changes that are made to the
environment are continuous and don’t rely on a user completing their activities before being
broadcast to other users.

Where the VRShips platform was generalized in every aspect other than the data contained
within the common model, providing continuous activity support rather than discrete would
require a large amount of domain specific knowledge to be supplied to the user. The tools that
the user normally operates would require wrapping of source code to enable the dynamic
transfer of data during operation to other users. A task or activity level co-ordination layer
would still be necessary to avoid chaotic behaviour, but would provide support for
dynamically created processes and would respond to as well as guide the users actions in both
a planned and ad-hoc manner. This activity level co-ordination layer would therefore require
domain specific knowledge to be gathered regarding the users actions, to be used as a basis
for establishing a new course of action.

The virtual platform developed within the VRShips-ROPAX project is currently being
exploited within other European Union funded projects within the shipbuilding industry.
These projects are aiming to further develop the concepts within different contexts where the
long-term strategic focus is towards the production of a commercially viable platform. The
success of the platform has been demonstrated within a number of ship design scenarios
where the design activity has been predominantly undertaken by designers within the
shipbuilding industry. Since the components that manage the complexity of the design
process are generic (the integration platform, common model, inference engine, process
control tool and the generic wrapper), the platform is equally applicable to other sectors
where complexity within the design process is an issue, such as the large made-to-order
industry. Implementing the platform within a different domain would require the definition of
a neutral data structure to represent the data being generated and transferred between tools, as
well as the production of input/output data converters between the tools. This is perceived to
be the minimum development for integration of domain specific design and simulation tools if
a standard data representation does not exist. If a standard exists, the platform may be used
within the domain without any modification.

7 Acknowledgements
The authors would like to acknowledge the funding received to enable this research to be
undertaken. The VRShips-ROPAX project was funded by the European Commission (grant
number G3RD-CT-2001-00506), which is part of the Fifth Framework Programme for
Research, Technological Development and Demonstration.

8 References
(2001) Industrial automation systems and integration - Product data representation and exchange - Part 227:

Application protocol: Plant spatial configuration. International Organization for Standardization.
(2003) Industrial automation systems and integration - Product data representation and exchange - Part 216:

Application protocol: Ship moulded forms. International Organization for Standardization.
(2004a) Industrial automation systems and integration - Product data representation and exchange - Part 215:

Application protocol: Ship arrangement. International Organization for Standardization.
(2004b) Industrial automation systems and integration - Product data representation and exchange - Part 218:

Application protocol: Ship structures. International Organization for Standardization.

CATLEY, D. (1999) Prototype STEP data exchanges in ship initial design and the provision of an applications
programmer interface to "Tribon". IN CHRYSSOSTOMIDIS, C., JOHANSSON, K. (Ed.) International
Conference on Computer Applications in Shipbuilding. Massachusetts, USA, Massachusetts Institute of
Technology.

CHAPANIS, A., FRICK, F. C., GARNER, W. R., GEBHARD, J. W., GRETHER, W. F., HENNEMAN, R. H.,
KAPPAIF, W. E., NEWMAN, E. B. & WILLIAMS, A. C. (1951) Human engineering for an effective
air navigation and traffic control system. IN P.M.FITTS (Ed.) Washington D.C., National Research
Council.

CUMMINGS, M. L. (2004) Automation bias in intelligent time critical decision support systems. AIAA 1st
Intelligent Systems Technical Conference. Chicago, American Institute of Aeronautics and Astronautics.

DUFFY, S. M. (1995) The design complexity map and the design co-ordination framework. 10th Integrated
Production Systems Seminar. Fuglso, Denmark, Insistute of Engineering Design.

GRAU, M., KOCH, T. (1999) Applying STEP Technology to Shipbuilding. IN CHRYSSOSTOMIDIS, C.,
JOHANSSON, K. (Ed.) International Conference on Computer Applications in Shipbuilding.
Massachusetts, USA, Massachusetts Institute of Technology.

GUAN, X., DUFFY, A. H. B. & MACCALLUM, K. J. (1997) Prototype system for supporting the incremental
modelling of vague geometic configurations. AIEDAM special issue of Geometric Representation and
Reasoning in Design, 11, 287-310.

MANFAAT, D., A.H.B. DUFFY (1998) SPIDA: abstracting and generalising layout design cases. Artificial
Intelligence for Engineering Design, Analysis, and Manufacturing, 12, 141-159.

MANN, R. W. & COONS, S. A. (1965) Computer-aided design. McGraw-Hill Yearbook Science and Technology.
New York, McGraw-Hill.

RANDO, T. C. (2001) XML-based interoperability in the Integrated Shipbuilding Environment (ISE). Journal of
Ship Production, 17, 69-75.

WHITFIELD, R. I., A.H.B. DUFFY, J. MEEHAN, Z. WU (2003a) Ship product modelling. Journal of Ship
Production, 19, 230-245.

WHITFIELD, R. I., DUFFY, A. H. B., COATES, G. & HILLS, W. (2003b) Efficient process optimisation.
International Journal of Concurrent Engineering: Research and Applications, 11, 83-92.

YAN, X. T., REHMAN, F. & BORG, J. (2002) Foreseeing design solution consequences using design context
information. IFIP Working Group 5.2. Malta.

ZHANG, Y., MACCALLUM, K. J. & DUFFY, A. H. B. (1997) Product knowledge modelling and management.
2nd Workshop of Product Structuring - International Society for the Science of Engineering Workshop
(WDK). Delf, Netherlands, WDFK.

	1 Introduction
	2 The Intelligent Design Assistant philosophy
	3 VRShips-ROPAX (VRS) & the VRS virtual platform
	3.1 VRS project structure
	3.2 Platform overview
	3.3 Virtual platform objectives

	4 Development of the VRS virtual platform
	4.1 Integration component
	4.2 Common model
	4.3 Virtual interaction
	4.4 Inference engine
	4.5 Process control tool
	4.6 Simulation engine

	5 Use of the VRS virtual platform
	6 Future developments and challenges
	7 Acknowledgements
	8 References

