Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures

Itskos, G. and Belton, C. and Heliotis, G. and Watson, I.M. and Dawson, M.D. and Murray, R. and Bradley, D.D.C. (2009) White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures. Nanotechnology, 20 (27).

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have studied the room-temperature non-radiative energy transfer processes in hybrid structures composed of (Ga, In)N/GaN single quantum wells and semiconducting polymer blend films placed in nanometre-scale proximity. The blends consist of three polyfluorene materials with concentrations adjusted so that they emit white light. Power-dependent photoluminescence (PL) measurements are used to investigate the process of energy transfer from the quantum wells to the different components of the polymer blend. We show that energy distribution among the hybrid structures involves competition between nanoscale range non-radiative energy transfer processes from the inorganic well to the polymer components and within the blend itself.