Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Fabrication of planar GaN-based micro-pixel light emitting diode arrays

Massoubre, D. and McKendry, J. and Guilhabert, B.J.E. and Gong, Z. and Watson, I.M. and Gu, E. and Dawson, M.D. (2009) Fabrication of planar GaN-based micro-pixel light emitting diode arrays. IEEE Lasers and Electro-Optics Society Annual Meeting. pp. 84-85. ISSN 1092-8081

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Micro-pixelated GaN light-emitting diodes (‘micro-LED’s) offer attractions for a wide range of applications including microdisplays, mask-free photolithography, lab-on-a-chip and bioinstrumentation [1]. Mesa dry etching methods have underpinned the development of this technology to date. Here we propose and demonstrate a new planar process which simplifies the process flow and permits individually-addressable pixelated devices to be fabricated without any obvious degradation of electrical and optical performance. The approach is based on the intrinsic high resistivity of the p-type GaN layer for pixel to pixel electrical isolation and on a CHF3 plasma treatment to dramatically reduce current leakage through the p-GaN/metal interface. Consequently, this process requires a lower number of fabrication steps than previously used processes using mesa etching for pixel definition and dielectric deposition for electrical insulation [2]. It leads to a planar active area well suited for further integration of functional micro-elements, including microfluidic-channels, microoptics or luminescent materials for colour conversion [3, 4]. This new fabrication route has been validated by fabricating and characterizing an individually addressable micro-stripe LED array emitting at 470 nm.