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Abstract

How does Google decide which web sites are important? It uses an

ingenious algorithm that exploits the structure of the web and is resis-

tant to hacking. Here, we describe this PageRank algorithm, illustrate

it by example, and show how it can be interpreted as a Jacobi iteration

and a teleporting random walk. We also ask the algorithm to rank the

undergraduate mathematics classes offered at the University of Strath-

clyde. PageRank draws upon ideas from linear algebra, graph theory and

stochastic processes, and it throws up research-level challenges in scientific

computing. It thus forms an exciting and modern application area that

could brighten up many a mathematics class syllabus.

1 Introduction

Everybody knows about the search engine Google, and most people use it. Why
is it so successful? At the Google website

http://www.google.com/technology/

all is revealed.

“The heart of our software is PageRank; a system for ranking web
pages developed by our founders Larry Page and Sergey Brin at Stan-
ford University. And while we have dozens of engineers working to
improve every aspect of Google on a daily basis, PageRank continues
to provide the basis for all of our web search tools.”
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PageRank, a sleek algorithm in computational graph theory, shows how one
killer mathematical idea can build up a global brand name. Google began as a
research project for Ph.D. candidates Page and Brin when they were, respectively,
24 and 23 years old. It now answers over 200 million queries per day.

Our aim here is to describe PageRank, illustrate it via simple examples, and
use it to pull together ideas from numerical analysis and stochastic processes.
We also point out, via a somewhat frivolous example, how its utility extends well
beyond the world wide web.

The observations in sections 4 and 5 are not new. Indeed, both the linear sys-
tem/eigenvector formulation and the random walk interpretation are mentioned
in the original work [15]. However, we believe that there are benefits to be had
from a unified, low-level review—in particular, teachers in further and higher ed-
ucation may find that this material can be slipped into a class on linear algebra,
graph theory, stochastic processes or scientific computation. We also see it as a
jumping-off point for student projects.

2 The PageRank Algorithm

Search engines must do a number of tasks. Here are three important ones.

Task 1 Locate web pages and store pertinent information in some sort of archive.

Task 2 In response to a user’s query, perform a real-time computation on the
archive to find a list of relevant web pages.

Task 3 Decide the order in which to report these pages to the user, on the basis
of (a) their relevance to the query and (b) their overall importance.

PageRank pertains exclusively to the third task. Its mission is to measure the
importance of each page on the web, so as to inform part (b) of the beauty
contest.

Although the precise details of Google’s inner workings are not available to the
general public, the basic PageRank algorithm has been publicised by Page and
Brin [15]. Typing “PageRank” into Google brings up many articles, tutorials,
essays, threads, and even diatribes. As is the way with the web, these are of
variable quality. (Presumably, those with the highest PageRankings will be the
best!)

To describe the algorithm, we first think of the web as a directed graph.
Figure 1 shows a dramatically simplified model of the web that consists of 4 pages,
HOME, PHOTOS, HOBBY and BIOGRAPHY. The arrows indicate links, so,
for example, there is a link from HOME to BIOGRAPHY and from HOBBY to
PHOTOS. We can store this information in a 4 by 4 adjacency matrix, W , as
illustrated in Table 1. Generally, W (i, j) is equal to 1 if there is a link from the
ith page to the jth page, and zero otherwise. The degree of the ith page (or,
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HOME BIOGRAPHY PHOTOS HOBBY degree
HOME 0 1 1 1 3

BIOGRAPHY 1 0 0 0 1
PHOTOS 1 0 0 0 1
HOBBY 1 0 1 0 2

Table 1: Entries in the adjacency matrix for Figure 1. Final column shows the
degree of each page.

more precisely, the out degree) is defined as the total number of links going out
from that node. Equivalently, it is the sum of the entries along the ith row of the
adjacency matrix. Table 1 includes the degree information for Figure 1.

HOME

PHOTOS

HOBBY

BIOGRAPHY

Figure 1: Example of web pages with connections.

To generalize this concept, we need some notation.

• Let there be N web pages, arbitrarily labelled 1, 2, . . . , N .

• Let W be the N × N adjacency matrix, so the (i, j) element, wij, equals 1
if there is a link from page i to page j, and equals zero otherwise.

• Let degi denote the degree of the ith node, so degi :=
∑N

j=1 wij.

We also assume that that degi 6= 0 for all 1 ≤ i ≤ N . (In practice, pages with no
outgoing links—dangling pages—must be treated specially.)

3



The PageRank algorithm proceeds iteratively, assigning a value rn
j to the jth

page at the nth iteration. The iteration is

rn
j = (1 − d) + d

N
∑

i=1

wijr
n−1
i

degi

. (1)

Here, d is some constant in the range 0 < d < 1. We will use d = 0.85 unless
otherwise stated. The iteration can be justified quite easily. The key idea is to
regard a link from i to j as a vote of confidence for page j from page i. So the
importance of page j can be measured by looking at the links coming in to that
page. It makes sense to weight the votes according to the level of importance
of the voter—a vote from an important page should carry more weight than
a vote from an unimportant page. It also makes sense to give each node an
equal influence by scaling the weight of its vote by the number of votes that it
casts. This means that the weight wij gets scaled to wij/degi. The final twist
in the algorithm is the introduction of the constant d. Each node gets given a
ranking of 1− d for free, and then gets d times the value arising from those votes
of confidence. (We will see later that d is a little less mysterious when other
interpretations of the algorithm are taken.)

Summarizing the arguments above, the iteration (1) for updating the ranking
of page j could be described as follows.

• For each page i that points to j, add in the scaled value of the current
ranking, rn−1

i /degi.

• Take d times this sum and add 1 − d.

3 Examples

For the example in Figure 1 we have

W =









0 1 1 1
1 0 0 0
1 0 0 0
1 0 1 0









.

Taking d = 0.85 and starting with the initial guess r0
i ≡ 1, we obtained the

following results, to four decimal places,

Iteration number
1 2 3 . . . 19 20

HOME 1.000 2.2750 1.4321 . . . 1.7687 1.7697
BIOGRAPHY 1.000 0.4333 0.7946 . . . 0.6515 0.6511

PHOTOS 1.000 0.8583 0.9788 . . . 0.9282 0.9280
HOBBY 1.000 0.4333 0.7946 . . . 0.6515 0.6511
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We see that after 20 iterations, the PageRank values appear to have settled down
in their first two decimal places. (Convergence of the algorithm is discussed in
the next section.) As we would expect, HOME, which is pointed to by all other
pages, receives the highest ranking. PHOTOS is next, because of the link there
from HOBBY, and BIOGRAPHY and HOBBY share last place.

Suppose we alter the network by adding a link from PHOTOS to BIOGRA-
PHY, see Figure 2. Because PHOTOS is more important than HOBBY, we would
expect this new link to count more than the link from HOBBY to PHOTOS, so
BIOGRAPHY should jump up the rankings. PageRank on this new network
gives

Iteration number
1 2 3 . . . 19 20

HOME 1.000 1.8500 1.4285 . . . 1.5851 1.5852
BIOGRAPHY 1.000 0.8583 0.0390 . . . 0.9620 0.9620

PHOTOS 1.000 0.8583 0.8583 . . . 0.8538 0.8538
HOBBY 1.000 0.4333 0.6742 . . . 0.5991 0.5991

which confirms our prediction.

HOME

PHOTOS

HOBBY

BIOGRAPHY

Figure 2: Example of web pages with connections.

Figure 3 shows a network with a home page and a set of five lectures. Each
lecture points to the next, with the last one pointing back to HOME. No matter
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what ordering we use for the pages, the adjacency matrix for this network is

W =

















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

















.

This symmetry suggests that all pages should have equal PageRank, and this is
confirmed by the observation that rj ≡ 1 is a fixed point of the iteration (1).

HOME

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Figure 3: Example of web pages with connections.

If we alter the network so that all lectures point back to HOME, as illustrated
in Figure 4, then the ranking becomes, to four decimal places,

HOME 1.9879
LECTURE 1 1.8397
LECTURE 2 0.9319
LECTURE 3 0.5460
LECTURE 4 0.3821
LECTURE 5 0.3124

which is perhaps a more reasonable reflection of the relative importance of the
pages.

Our examples suggest that you can tinker with the Google PageRank values
for your web pages by reorganizing the local connectivity structure. While this
is true, and the relative orderings of your pages may change, the effect on the
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HOME

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Figure 4: Example of web pages with connections.

absolute PageRankings is likely to be minimal. Indeed, one of the big advantages
of PageRank over earlier systems is its insensitivity to spammers who seek to
inflate their rank by devious means. To get a high overall PageRank, your page
must be referenced by other high-ranking pages, something that is hard for any
particular individual to influence. Also, by focussing solely on the link structure,
and not the web page content, PageRank, unlike some predecessors, cannot be
misled by the insertion of important sounding words or phrases. Of course the
system is not completely hack-proof. The article [2] mentions that a concerted
effort by one cybersmith convinced Google to return his friend’s home page as
the top-ranking match to “talentless hack.” That article also describes how
a well-referenced spoof site

http://www.coxar.pwp.blueyonder.co.uk/

became the number one choice for “weapons of mass destruction.” There is
also a positive feedback aspect to the process: lots of websites now refer to those
two examples, giving them extra votes of confidence. A brute force approach to
rank inflation may also be adopted; some commercial sites are willing to pay for
incoming links [7].

The documents [3, 16] and the book [1] give more details about how web
administrators can use PageRank to their advantage.

Having discussed and illustrated the algorithm, in the next two sections we
show that PageRank can be looked at from other angles.
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4 Jacobi Iteration

Suppose we have a linear system of simultaneous equations, Ax = b, where
A ∈ R

N×N and b ∈ R
N are given and x ∈ R

N is to be found. If we have a
current guess for the solution, {xn−1

k }N
k=1, then we may use the jth equation,

N
∑

k=1

ajkxk = bj ,

to find a new value for xj. Inserting xn−1
k for k 6= j and solving for xj in this way,

we get the iteration

xn
j =

1

ajj

(

bj −

N
∑

k=1,k 6=j

ajkx
n−1
k

)

.

Using this formula for j = 1, 2, . . . , N , gives what is known as the Jacobi iteration.
Of course, we require ajj 6= 0 for all j = 1, . . . , N in order for the iteration to be
well defined. If we split A into

A = Σ + L + U,

where Σ is diagonal, L is strictly lower triangular and U is strictly upper trian-
gular, then standard numerical analysis results, see for example, [14], show that
the iteration converges to a unique solution x if

ρ
(

Σ−1(L + U)
)

< 1. (2)

Here ρ denotes the spectral radius of a matrix, that is, the largest of the moduli
of the eigenvalues. Further, the convergence is linear with a rate at least as fast
as ρ: given any vector norm ‖ · ‖, there is a corresponding constant C such that
the error, errn ∈ R

N with errn
k = rn

k − xk, satisfies

‖errn‖ ≤ Cρn.

Simple algebra shows that the PageRank iteration (1) is precisely the Jacobi
iteration applied to the system

(I − dW T D−1)r = (1 − d)e, (3)

where I is the identity matrix,

I =











1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1











∈ R
N×N ,
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W T ∈ R
N×N is the transpose of W , so (W T )ij = (W )ji, D is the diagonal degree

matrix,

D =











d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dN











∈ R
N×N ,

and e is the vector of ones,

e =











1
1
...
1











∈ R
N .

The left-hand side of (2) reduces to ρ
(

dW TD−1
)

in this case. By construction,
W T D−1 has column sums equal to one, so ‖W TD−1‖1 = 1, where ‖ · ‖1 denotes
the L1 norm. Since the spectral radius is bounded above by any subordinate
vector norm we have ρ(W T D−1) ≤ 1, so

ρ
(

dW T D−1
)

≤ d.

So choosing d < 1 ensures that we satisfy the convergence condition (2).
It is clear from (1) that nonnegativity in the starting vector is preserved; that

is

r0
k ≥ 0 for all 1 ≤ k ≤ N ⇒ rn

k ≥ 0 for all 1 ≤ k ≤ N and 1 ≤ n.

Hence the solution r must have nonnegative components. Premultiplying by e
T

in (3) gives
e

T
r − deT W TD−1

r = (1 − d)eT
e,

which simplifies to
‖r‖1 − d‖r‖1 = (1 − d)N.

So ‖r‖1 = N , a fact that can be checked in the examples of the previous section.
In summary

the PageRank iterates converge to the solution r of the linear system
(3). This solution satisfies rk ≥ 0 and

∑N

k=1 rk = N . The PageRank
algorithm corresponds to the Jacobi iteration applied to this system,
and it converges linearly with rate at least d.

It is perhaps worth emphasizing that d not only controls the linear convergence
rate but also affects the solution. For example, changing from d = 0.85 to d = 0.7
in the example of Figure 4 compresses the PageRanks to
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HOME 1.9020
LECTURE 1 1.6314
LECTURE 2 0.8710
LECTURE 3 0.6048
LECTURE 4 0.5117
LECTURE 5 0.4791

In the extreme, and non-useful, case where d = 0, from any starting vector r
0

the iteration produces the exact solution, r
1 = e, in a single step.

5 A Teleporting Random Walk on the Web

To connect PageRanking to stochastic processes, we first introduce a few basic
concepts. A discrete time, finite state, Markov chain is determined by a transition

matrix, P ∈ R
N×N . Given that the process is at state i at time n−1, pij gives the

probability that the process will be at state j at the next time level, n. Because
the process must be somewhere at time n, those probabilities must sum to one;
∑N

k=1 pik = 1. This means that P is a stochastic matrix.
In many cases, the probability of being in state j after a large number of

steps settles down to a fixed value πj, no matter what initial state was chosen.
Equivalently, πj is the proportion of time that we spend at state j in the long-

time limit. Such a vector π ∈ R
N , which must satisfy

∑N

k=1 πk = 1, is called
an invariant measure. If it exists it will satisfy P T π = π, that is, it will be an
eigenvector of P T corresponding to the eigenvalue 1 [13, 17]. There can be no
eigenvalues bigger than 1 in modulus, because a stochastic matrix has ‖P T‖1 = 1,
and ρ(P ) ≤ ‖P T‖1.

Consider now the prospect of taking a random walk on the web. Having
visited a web page at time n − 1, we look at the links coming out of that page
and choose one of them at random, uniformly, to visit at time n. If we are
currently at page i, then the probability of visiting page j on the next step is

{

0 if wij = 0, (no link exists),
wij

degi
if wij = 1, (a link exists).

The transition matrix for this Markov chain is thus P = D−1W . Imagine surfing
the web in this way for a few billion years. A measure of the “well-connectedness”
of page j is the proportion of time that we spend there, ultimately. This is
precisely the quantity πj mentioned above. A possible difficulty with this picture
is that we may get stuck at a web page with no outgoing links, or more generally,
may cycle around an isolated set of pages. To get around this, we may switch to
a teleporting random walk. At each time, we flip a biased coin that lands heads
with probability 1 − d. If the coin shows heads, we jump to a page chosen at
random, uniformly, over the whole web. Otherwise we follow a link as described
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above. The transition matrix for teleporting is F/N , where F ∈ R
N×N is a matrix

with all entries equal to one. It follows that the transition matrix for the overall
teleporting random walk is

P =
(1 − d)

N
F + dD−1W, (4)

It is intuitively reasonable that the teleporting trick gets around difficulties asso-
ciated with the construction of an invariant measure. More formally, it ensures
that the Markov chain is ergodic so that there is a unique, nonnegative solution
to the system P T π = π, where we normalise so that

∑N

k=1 πk = 1 [13, 17]. Using
(4), this linear system is

(

(1 − d)

N
F + d(D−1W )T

)

π = π,

which, since Fπ = e and (D−1W )T = W T D−1, may be written

(

I − dW TD−1
)

π =
(1 − d)

N
e. (5)

Comparing (5) and (3), we make the connection that π = r/N : the PageRank
solution, when scaled by the factor N , is precisely the invariant measure for the
teleporting random walk. We can take the connection further. Given a transition
matrix we may apply an unscaled version of the power method ([4]) in an attempt
to compute the invariant measure by regarding it as the eigenvector of the largest
eigenvalue of P T . Having chosen x

0, with x0
i ≥ 0 and

∑N

k=1 x0
k = 1, this gives

x
n = P T

x
n−1. Using (4), this iteration becomes

x
n =

(

(1 − d)

N
F + dD−1W

)T

x
n−1,

but since F T
x

n = e for all n, it simplifies to

x
n =

(1 − d)

N
e + dW T D−1

x
n−1.

This is precisely the original PageRank algorithm (1) with Nx
n playing the role

of r
n.
In summary

the normalized PageRank vector r/N is the unique invariant measure
for a surfer who takes a teleporting random walk on the web, with
transition matrix P in (4). The probability of a teleporting jump on
each step of this process is 1−d. The PageRank algorithm corresponds
to applying the power method to compute the invariant measure as
the dominant eigenvector of P T .
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6 Ranking Mathematics Classes

The PageRank algorithm need not be confined to web pages. It could conceivably
be let loose on any set of objects that have pairwise attachments. We note that
the algorithm (1) continues to make sense when the wij are real-valued, that is, in
the case of weighted edges, and, furthermore, the weights could also be negative.
Examples that spring to mind where objects could be PageRanked according to
their overall influence are

• Mathematical articles: if paper i cites paper j then set wij = 1.

• Financial assets: if stock i moves up/down a short time after stock j moves
up/down then set wij = 1.

• League tables: if Manchester City beat Manchester United 2-1 at home and
5-3 away, then set wunited,city = (2 + 5) − (1 + 3), etc.

In this section, we show how PageRank can be used on a graph whose nodes
are classes offered to undergraduate mathematics students at the University of
Strathclyde. The “link” information is provided by the pre-requisite structure
between classes. We took data from

http://www.maths.strath.ac.uk/ungrad/index.html

in July 2003. (A pre-requisite was taken to be a specification on the class web
page of either “Essential” or “Desirable.”) We looked at two interpretations.

Rank A: If class i is a pre-requisite for class j, then set wij = 1. Here, votes
of confidence feed in to classes that use previously covered material, so
PageRanking can be regarded as finding the “hardest” or “deepest” classes.

Rank B: If class i is a pre-requisite for class j, then set wji = 1. Here, votes of
confidence are given to classes that get used in later classes, so PageRanking
can be regarded as finding the most “useful” or “fundamental” classes.

Table 2 lists the 45 classes that we considered. The class codes reveal the
year of study; 11.6XX, 11.7XX. 11.8XX and 11.9XX denoting years 1,2,3, and
4 respectively. To illustrate how the connectivity structure is defined, the class
11.891, Laplace Transforms and Linear Systems, which is number 30 on our list,
is specified as a pre-requisite for the class 11.938, Higher Dimensional Dynamical
Systems, which is number 39 on our list. Thus w30,39 = 1 for Rank A, and
w39,30 = 1 for Rank B.

The PageRank results, normalized so that ‖r‖1 = 1, are shown in Figure 5.
Not surprisingly, final year classes, located at the right-hand end of Figure 5,
score well when we use Rank A. With this viewpoint, importance tends to filter
up through the years and the final year has the the greatest opportunity to reap
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Index Code Class
1 11 602 Introduction to Mechanics
2 11 606 Discrete Maths
3 11 611 IT Skills and Maths Software
4 11 612 Maths 1A
5 11 613 Maths 2A
6 11 700 Multivariable Calculus
7 11 710 Finite Dimensional Vector Spaces
8 11 711 Sequences and Series
9 11 712 Newtonian Mechanics
10 11 713 Numerical Analysis 2
11 11 721 Real Variable Calculus
12 11 722 Rigid Body Mechanics
13 11 725 Algebraic Structures
14 11 731 Differential Equations
15 11 741 Vector Calculus
16 11 801 Mathematical Analysis 2
17 11 802 Advanced Newtonian Mechanics
18 11 811 Mathematical Analysis 1
19 11 812 Advanced Rigid Body Mechanics
20 11 825 Abstract Algebra
21 11 835 Vector Spaces
22 11 841 Complex Analysis 1
23 11 843 Numerical Analysis 3
24 11 851 Complex Analysis 2
25 11 852 Fluid Mechanics 1
26 11 853 Numerical Analysis 4
27 11 861 Partial Differential Equations 1
28 11 862 Fluid Mechanics 2
29 11 871 Partial Differential Equations 2
30 11 891 Laplace Transforms and Linear Systems
31 11 921 Applications of Spectral Theory
32 11 922 Applied Functional Analysis
33 11 923 Continuum Mechanics 1
34 11 924 Continuum Mechanics 2
35 11 928 Numerical Solution of Initial Value PDEs
36 11 929 Modern Methods for Differential Equations
37 11 932 Numerical Approximation
38 11 937 One Dimensional Dynamical Systems
39 11 938 Higher Dimensional Dynamical Systems
40 11 939 Numerical Solution of Boundary Value PDEs
41 11 946 Waves
42 11 947 Coding Theory
43 11 948 Calculus of Variations
44 11 949 Mathematics of Financial Derivatives
45 11 951 Mathematics in Medicine

Table 2: Mathematics classes subjected to PageRanking.
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Figure 5: PageRank results for classes in Table 2.

the benefit of incoming links. For what it is worth, Continuum Mechanics 2, our
honours-level elasticity class, gets the highest Rank A score.

The picture reverses when Rank B is used. Here, the earlier year classes get
credit for laying the foundations. However, the the top “usefulness” ranking goes
not to a first year class but to the second year analysis course Sequences and
Series. The epsilon-delta proof is vindicated.

We are not, of course, proposing PageRank in isolation as an infallible means
to judge mathematics classes (especially since the two classes taught by one of the
authors were deemed neither outstandingly useful nor deep!), rather we simply
wish to show that the algorithm has wide applicability. Any serious implementa-
tion of PageRank would undoubtedly require some application-specific issues to
be addressed (e.g., in our case, it may be prudent to treat compulsory classes in
a special way), along with the the “dangling page” dilemma.

7 Discussion

Reasonable estimates suggest that the web currently contains over 3×109 pages.
This puts PageRanking in the big league of scientific computing [11]. However,
while a user’s query must be dealt with in real time, PageRanking is a behind-
the-scenes operation. In practice, Google updates its archive about once a month,
a period during which the “Google Dance” takes place: type that phrase in to
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Google to learn more. As we saw in section 4, the PageRanking task boils down
to a large, sparse, linear solve; a problem for which there are many rival methods.
Identifying promising alternatives to Jacobi is a current research theme [9, 10].
Iterative methods are natural, since last month’s rankings offer a good starting
approximation for this month’s, but issues such as the optimal choice of d and the
effect of the terminating criterion must be clarified before concrete comparisons
are to be made.

The original article [15] refers to an alternative, personalized, version of
PageRank, where F in (4) becomes a more general rank-one matrix. Here, the
teleporting jumps do not land uniformly across the web, but are biased towards a
user’s preferences. From teleporting it is but a tiny hop to small world networks

[5, 6, 8, 12, 18], another fascinating area where graph theory has refused to stay
in its box.
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