Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Optimal impact strategies for asteroid deflection

Vasile, M. and Colombo, C. (2008) Optimal impact strategies for asteroid deflection. Journal of Guidance, Control and Dynamics, 31 (4). pp. 858-872. ISSN 1533-3884

[img]
Preview
PDF (Colombo_C_-_strathprints_-_Optimal_Impact_Strategies_for_Asteroid_Deflection.pdf)
Colombo_C_-_strathprints_-_Optimal_Impact_Strategies_for_Asteroid_Deflection.pdf

Download (740kB) | Preview

Abstract

This paper presents an analysis of optimal impact strategies to deflect potentially dangerous asteroids. To compute the increase in the minimum orbit intersection distance of the asteroid due to an impact with a spacecraft, simple analytical formulas are derived from proximal motion equations. The proposed analytical formulation allows for an analysis of the optimal direction of the deviating impulse transferred to the asteroid. This ideal optimal direction cannot be achieved for every asteroid at any time; therefore, an analysis of the optimal launch opportunities for deviating a number of selected asteroids was performed through the use of a global optimization procedure. The results in this paper demonstrate that the proximal motion formulation has very good accuracy in predicting the actual deviation and can be used with any deviation method because it has general validity. Furthermore, the characterization of optimal launch opportunities shows that a significant deviation can be obtained even with a small spacecraft.