Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Displaced solar sail orbits: dynamics and applications

Simo, J. and McInnes, C.R. (2010) Displaced solar sail orbits: dynamics and applications. In: 20th AAS/AIAA Space Flight Mechanics Meeting, 2010-02-14 - 2010-02-17.

[img]
Preview
PDF (strathprints016423.pdf)
strathprints016423.pdf

Download (431kB) | Preview

Abstract

We consider displaced periodic orbits at linear order in the circular restricted Earth-Moon system, where the third massless body is a solar sail. These highly non-Keplerian orbits are achieved using an extremely small sail acceleration. Prior results have been developed by using an optimal choice of the sail pitch angle, which maximises the out-of-plane displacement. In this paper we will use solar sail propulsion to provide station-keeping at periodic orbits around the libration points using small variations in the sail's orientation. By introducing a first-order approximation, periodic orbits are derived analytically at linear order. These approximate analytical solutions are utilized in a numerical search to determine displaced periodic orbits in the full nonlinear model. Applications include continuous line-of-sight communications with the lunar poles.