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Abstract

The ability of numerical methods to reproduce long-time features of a

linear stochastic oscillator are examined. It is shown that certain, widely-

used, methods fail to capture the correct second moment growth rate,

whereas a customized extension of the partitioned Euler method behaves

well in this respect. It is also shown that the partitioned Euler method in-

herits an infinite-oscillation property. A weaker oscillation result is proved

for a wide class of numerical methods.

1 Introduction

This work is concerned with long-time numerical simulation of a linear stochastic
oscillator. Although finite-time convergence theory for globally Lipschitz stochas-
tic differential equations (SDEs) is well established, [5], far less is known about
the effectiveness of numerical methods over long time intervals. By focussing
on a linear oscillator we are able to obtain precise results about the ability of
numerical methods to preserve the properties of (a) having linear growth in the
second moment and (b) oscillating infinitely often. In particular, we show that
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the standard Euler–Maruyama method can be greatly improved at no extra com-
putational cost. This conclusion is consistent with that in [8, Proposition 6.2],
where mean-square error estimates for long time intervals were derived.

In section 2 we introduce the linear stochastic oscillator and state its second mo-
ment and oscillation properties. Both properties relate to infinite time intervals,
and hence the traditional finite-time convergence theory for numerical methods
applied to SDEs does not automatically guarantee that these features will be
reproduced numerically. In section 3 we show that the Euler–Maruyama method
does not maintain the linear growth property but, rather, produces a second mo-
ment that increases exponentially with time (Theorem 3.1). By contrast, we also
show that an implicit, backward Euler–Maruyama method has second moment
bounded above for all time. Motivated by the Partitioned Euler method, which
has proved successful in the simulation of deterministic Hamiltonian problems, we
then introduce a Partitioned Euler–Maruyama method that gives linear growth
for all stepsizes less than 2, and at a rate that is asymptotically exact as the
stepsize tends to zero (Theorem 3.3). We show in section 4 that the Partitioned
Euler–Maruyama method inherits a precise analogue of the infinite oscillation
property (Theorem 4.1). In section 5 we give a weaker but more widely applica-
ble oscillation result. We show that strong finite-time convergence is enough to
ensure that given any ǫ > 0 and N > 0, by choosing a sufficiently small stepsize an
Itô-Taylor method will pass within ǫ of the origin at N distinct time points with
probability greater than 1− ǫ (Theorem 5.1). The proof of this theorem relies on
a lemma that bounds the probability of the first zero-crossing time of the exact
solution exceeding some value T independently of the initial data (Lemma 5.1).

2 Stochastic Oscillator

A linear stochastic oscillator with additive noise can be written ẍ(t) + x(t) =
hẆ (t), or, more precisely, as the two-dimensional stochastic differential equation

dx(t) = y(t)dt, (1)

dy(t) = −x(t)dt + hdW (t), (2)

where h > 0 is a constant and W (t) is a standard Wiener process. For initial
data x(0) = x0 ∈ R, y(0) = y0 ∈ R, it can be shown [6] that this equation has
the unique solution

x(t) = x0 cos t + y0 sin t + h

∫ t

0

sin(t − s)dW (s), (3)

y(t) = −x0 sin t + y0 cos t + h

∫ t

0

cos(t − s)dW (s). (4)
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As in [6, 7], for definiteness, we will focus on the case where x0 = 1 and y0 = 0.
We are interested in long-time behaviour of the solution, and we will look at the
two properties given by the following theorems.

Theorem 2.1. For the linear stochastic oscillator (1)–(2) with x0 = 1, y0 = 0,
the second moment of the solution satisfies E [x(t)2 + y(t)2] = 1 + h2t.

Proof. The result follows directly from (3)–(4).

Theorem 2.2 (Markus and Weerasinghe). For the linear stochastic oscillator
(1)–(2) with x0 = 1, y0 = 0, almost surely, x(t) has infinitely many zeros, all
simple, on each half line [t0,∞) for every t0 ≥ 0.

Proof. See [7, Theorem 3] or [6, Theorem 4.1, Chapter 8].

3 Second Moment Properties of Euler-based Schemes

In the deterministic setting, it is well known that numerical methods do not
automatically inherit long-time behavior from an underlying differential equation.
In particular, with h = 0 in (1)–(2), Euler’s method incorrectly spirals outwards,
and the backward Euler method incorrectly spirals inwards, whereas a carefully
chosen symplectic method will remain on the manifold x(t)2 + y(t)2 = constant,
[2, 12]. In this section, we develop simple extensions of these results for the
linear stochastic oscillator. The analysis is in the same spirit as previous work
on mean-square linear stability (for example, [3, 11]) but we note that the noise
term considered here is additive rather than multiplicative. Related asymptotic
results for moments and stationary laws have appeared in [13, 14].

Applying a numerical timestepping method to the problem (1)–(2) produces dis-
crete approximations {xn}, {yn} with xn ≈ x(tn) and yn ≈ y(tn). We assume
that a constant stepsize, ∆t, is used, so that tn = n∆t. We are concerned with
the regime where ∆t > 0 is fixed, and n → ∞, so tn → ∞. The simplest and
most widely used numerical method is Euler–Maruyama (EM) [5], which gives
the recurrence

xn+1 = xn + ∆t yn, (5)

yn+1 = yn − ∆t xn + h∆Wn, where ∆Wn = W (tn+1) − W (tn). (6)

Theorem 3.1. Consider the recurrence (5)–(6) arising from the Euler–Maruyama
method applied to the linear stochastic oscillator (1)–(2) with x0 = 1, y0 = 0. For
any ∆t ≤ 2,

E [x2
n + y2

n] ≥ e( 1

2
∆t)tn .
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Proof. Squaring (5) and (6), adding and taking expected values, using the facts
that ∆Wn is independent of xn and yn and E[∆W 2

n ] = ∆t, we find that

E[x2
n+1 + y2

n+1] = (1 + ∆t2)E[x2
n + y2

n] + h2∆t ≥ (1 + ∆t2)E[x2
n + y2

n].

Hence, E[x2
n + y2

n] ≥ (1 + ∆t2)n ≥ e( 1

2
∆t)tn .

Theorem 3.1 shows that given arbitrarily small ∆t > 0, EM produces solutions
with second moment that grows exponentially with tn, a rate that is qualitatively
different from the linear growth rate for the true second moment (Theorem 2.1).

Next we look at the backward Euler–Maruyama (BEM) method, which is also
known as the implicit Euler–Maruyama method, see, for example [5, Chapter 12].
Applied to (1)–(2) this gives

xn+1 = xn + ∆t yn+1, (7)

yn+1 = yn − ∆t xn+1 + h∆Wn, where ∆Wn = W (tn+1) − W (tn). (8)

Theorem 3.2. The recurrence (7)–(8) arising from the backward Euler–Maruyama
method applied to the linear stochastic oscillator (1)–(2) with x0 = 1, y0 = 0 pro-
duces

E [x2
n + y2

n] ≤ 1 +
h2

∆t
, for all n ≥ 0.

Hence,

lim
tn→∞

E [x2
n + y2

n]

tn
= 0.

Proof. The relations (7)–(8) may be written.

(1 + ∆t2)xn+1 = xn + ∆t yn + h∆t∆Wn,

(1 + ∆t2)yn+1 = yn − ∆t xn + h∆Wn.

Squaring, adding and taking expected values gives

E [x2
n+1 + y2

n+1] =
1

1 + ∆t2
(
E [x2

n + y2
n] + h2∆t

)
,

and the result follows.
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Theorem 3.2 shows that given aribitrarily small ∆t > 0, BEM produces solutions
with second moment that grows at a slower rate than the underlying SDE.

We now consider the following recurrence

xn+1 = xn + ∆t yn, (9)

yn+1 = yn − ∆t xn+1 + h∆Wn. (10)

The formula (9) for xn+1 coincides with that for Euler–Maruyama (5), but the
formula (10) for yn+1 uses the new value xn+1 in the right-hand side, rather than
the value xn that appears in (6).

For deterministic systems in partitioned form, u̇ = a(u, v), v̇ = b(u, v), there
is a well known partitioned, or symplectic, Euler method; see, for example [2,
Equations (1.9)]. For an SDE analogue, using the Euler–Maruyama stochastic
increment leads to what we will call the Partitioned Euler–Maruyama (PEM)
method. It can be shown that such a method shares the usual finite-time strong
convergence properties of other Euler-based methods, of the type exemplified by
[5, Corollary 10.6.4]. This follows from the general convergence theory in [8, 10],
and a specific proof was given in [9], using a similar approach to that in [4,
Appendix A].

It is appropriate to mention at this stage that a general framework for deriving
symplectic methods for Hamiltonian systems with additive noise has been de-
veloped in [8]. Our work has the emphasis of showing the benefits of using a
symplectic method via analysis on a simple test problem, and in this respect it
closely matches section 6 of [8]. In [8, Proposition 6.2] a symplectic Euler-based
method for a linear oscillator with additive noise is shown to have good mean-
square error propagation over time intervals [0, T ], provided that T∆t2 is small.
Theorem 3.3 below deals with second moment behavior and applies in the ∆t
fixed, n → ∞ regime. The result shows that, unlike EM and BEM, the PEM
recurrence gives excellent second moment growth properties.

Theorem 3.3. Consider the recurrence (9)–(10) arising from the Partitioned
Euler–Maruyama method applied to the linear stochastic oscillator (1)–(2) with
x0 = 1, y0 = 0. There exist functions Clower, Cupper : (0, 2) 7→ R

+ such that for
any ∆t < 2,

Clower(∆t)(1 + h2tn) ≤ E [x2
n + y2

n] ≤ Cupper(∆t)(1 + h2tn), ∀n ≥ 0,

where Clower and Cupper are independent of n with

Clower(∆t) = 1 + O(∆t), Cupper(∆t) = 1 + O(∆t), as ∆t → 0.
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Proof. Suppose ∆t < 2. The method (9)–(10) may be written

[
xn

yn

]
= A

[
xn−1

yn−1

]
+

[
0

h∆Wn−1

]

= An

[
1
0

]
+

n∑

j=1

h∆Wj−1A
n−j

[
0
1

]
,

where

A =

[
1 ∆t

−∆t 1 − ∆t2

]
.

We note that A has eigenvalues λ, λ corresponding to eigenvectors v, v, where

λ = 1 − ∆t2

2
+ i

∆t
√

4 − ∆t2

2

and

v =

[
1

−∆t
2

+ i
√

4−∆t2

2
.

]
.

The key to the success of the method is that λ is of unit modulus.

Letting ‖ · ‖ denote the Euclidean vector norm, we have

E

∥∥∥∥

[
xn

yn

]∥∥∥∥
2

=

∥∥∥∥A
n

[
1
0

]∥∥∥∥
2

+ h2∆t
n∑

j=1

∥∥∥∥A
n−j

[
0
1

]∥∥∥∥
2

. (11)

We may expand

[
1
0

]
= αv + αv, where α =

1

2
− i

∆t

2
√

4 − ∆t2
.

Letting λ = eiθ and α = |α|eiγ, we find that

An

[
1
0

]
= 2|α|

[
cos(γ + nθ)

−∆t
2

cos(γ + nθ) − sin(γ + nθ)
√

4−∆t2

2

]
.

It follows that ∥∥∥∥A
n

[
1
0

]∥∥∥∥
2

= 1 + ∆tD(n, ∆t), (12)

where D(n, ∆t) can be bounded uniformly in n; that is

D(n, ∆t) ≤ D̂(∆t), for all n.
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Further, there is a constant D̃ such that D̂(∆t) ≤ D̃ for all sufficiently small ∆t.
Similarly we find that

∥∥∥∥A
k

[
0
1

]∥∥∥∥
2

= 1 + ∆tE(k, ∆t), (13)

where E(k, ∆t) can be bounded uniformly in k,

E(k, ∆t) ≤ Ê(∆t), for all k,

and there is a constant Ẽ such that Ê(∆t) ≤ Ẽ for all sufficiently small ∆t.

The proof is completed by using (12) and (13) in (11).

4 Oscillation Property of Partitioned Euler–Maruyama

Theorem 3.3 shows that PEM captures the appropriate second moment growth
given in Theorem 2.1. In this section we show that PEM also reproduces an exact
analogue of the oscillation property in Theorem 2.2.

Theorem 4.1. Consider the recurrence (9)–(10) arising from the Partitioned
Euler–Maruyama method applied to the linear stochastic oscillator (1)–(2) with
x0 = 1, y0 = 0. For any ∆t < 2, the sequence {xn}n≥0 will switch signs infinitely
many times as n → ∞, almost surely.

Proof. Fix ∆t < 2. From (9)–(10), the sequence {xn}n≥0 from PEM satisfies

Xn = BnX0 + Bn−1r1 + Bn−2r2 + · · ·+ rn, (14)

where

Xn =

[
xn+1

xn

]
, rn =

[
h∆t ∆Wn−1

0

]
, B =

[
(2 − ∆t2) −1

1 0

]
(15)

and X0 = [1, 1]T . Considering the first component in (14), we get

xn+1 = an + bn +

n∑

i=1

an−i r̂i, (16)

where r̂i = h∆t ∆Wi−1 ∼ N(0, h2∆t3) and the constants an and bn satisfy bn+1 =
−an and an+1 − (2 − ∆t2)an + an−1 = 0.
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Further algebra then reveals that there is a constant K such that

|an + bn| ≤ K

and
an−i r̂i ∼ N(0, σ2

i ), with σ2
i ≤ Kh2∆t3.

Moreover,

s2
n :=

n∑

i=1

σ2
i → ∞ as n → ∞.

It follows that the Law of the Iterated Logarithm may be applied to the sequence
Sn :=

∑n
i=1 an−i r̂i, see for example [1, Exercises 10.2, number 3]. We conclude

that for any ǫ > 0 and n sufficiently large, Sn will almost surely exceed the
bounds −(1 − ǫ)(2s2

n ln ln s2
n)1/2 and (1 − ǫ)(2s2

n ln ln s2
n)1/2 infinitely often. The

boundedness of an + bn ensures that the same is true for xn.

5 Oscillation Properties of Strong Itô-Taylor Schemes

In this section we give an oscillation theorem that is weaker than Theorem 4.1,
but applies to a more general class of methods. The result requires only a finite
time strong convergence condition.

Given a discrete approximation {xn}, {yn}, we suppose that an interpolation
procedure can be defined to give a continuous-time extension x̂(t), ŷ(t) with
x̂(tn) = xn and ŷ(tn) = yn. Kloeden and Platen [5, Chapter 10] show how
continuous-time extensions can be defined for the class of Itô-Taylor approxima-
tions and establish a general finite-time strong convergence theory. The following
result is immediate. Note that the precise value of α is not important for Theo-
rem 5.1.

Corollary 5.1 (Kloeden and Platen). For a strong Itô-Taylor approximation
x̂(t), ŷ(t) of order γ ≥ 1/2 applied to the linear stochastic oscillator (1)–(2) with
initial data of bounded second moment, and with sufficiently small ∆t, say ∆t ≤
1,

E sup
t∈[0,T ]

∥∥∥∥

[
x̂(t)
ŷ(t)

]
−
[

x(t)
y(t)

] ∥∥∥∥
2

≤ C∆tγ , (17)

where the constant C depends only on the initial data and T .

Proof. The SDE (1)–(2) satisfies the smoothness, global Lipschitz and linear
growth requirements of [5, Corollary 10.6.4].
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We will make use of the following lemma concerning the first zero-crossing time of
x(t). The key point in the lemma is that (18) holds independently of initial data.
This allows us to prove an oscillation result for numerical methods by considering
subintervals and making use of finite-time strong convergence.

Lemma 5.1. For the linear stochastic oscillator (1)–(2) with x0, y0 ∈ R, let τ1

denote the time of the first zero of x(t) on [0,∞), that is,

τ1 = inf{t ≥ 0 : x(t) = 0}.

Then, uniformly in x0 and y0,

P(τ1 > T ) <
2

2T/π
for each T ≥ π. (18)

Proof. The proof is based on that of [6, Theorem 4.4, Chapter 8]. Here we allow
for arbitrary initial data in R

2.

We consider the nontrivial case x0 6= 0. Recall that x(t) is given by (3). Evaluate
x(t) at the discrete instants t = kπ, k = 1, 2, . . ., to obtain

x(kπ) = cos(kπ)[x0 − hB̄(kπ)], where B̄(kπ) =

∫ kπ

0

sin s dW (s).

Hence x(kπ) > 0 if and only if

B̄(kπ)

{
> x0/h for k = 1, 3, . . . ,
< x0/h for k = 2, 4, . . . .

Set

Yk =

∫ kπ

(k−1)π

sin s dW (s),

so that Yk ∼ N(0, π/2) are i.i.d. and B̄(kπ) =
∑k

i=1 Yi. Then, for x0 > 0,

{τ1 > π} = {x(t) > 0 for all 0 ≤ t ≤ π} ⊂ {x(π) > 0}
= {B̄(π) > x0/h}
= {Y1 > x0/h}
= {Y1 > |x0|/h}.

For x0 < 0 a similar argument gives

{τ1 > π} ⊂ {−Y1 > |x0|/h}.
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Thus, for any x0,

P(τ1 > π) ≤ P

(
Y1 >

|x0|
h

)
= 1 − N

(
|x0|
h

√
2

π

)
=: c(x0, h),

where N(u) = (1/
√

2π)
∫ u

−∞ e−y2/2 dy. Furthermore, we have that for x0 > 0

{τ1 > 2π} = {x(t) > 0 for all 0 ≤ t ≤ 2π} ⊂ {x(π) > 0, x(2π) > 0}
= {B̄(π) > x0/h, B̄(2π) < x0/h}
= {Y1 > x0/h, Y1 + Y2 < x0/h}
⊂ {Y1 > x0/h, Y2 < 0}.

Similarly, for x0 < 0 we find that

{τ1 > 2π} ⊂ {−Y1 > |x0|/h, Y2 > 0}.

Overall, for any x0,

P(τ1 > 2π) ≤ P(Y1 > |x0|/h)P(Y2 < 0) =
c(x0, h)

2
.

Continuing this argument we find that

P(τ1 > kπ) ≤ c(x0, h)

2k−1
for k = 1, 2, . . . .

In order to estimate the probability that τ1 exceeds an arbitrary positive number
T ≥ π, we let ⌊T/π⌋ be the greatest integer not exceeding T/π, so T − 1 <
⌊T/π⌋π ≤ T . Then

P(τ1 > T ) ≤ P(τ1 > ⌊T/π⌋π) ≤ c(|x0|/h)

2⌊T/π⌋−1
<

4c(x0, h)

2T/π
.

Since c(x0, h) ≤ 1

2
uniformly in x0 and h, the result follows.

We now state and prove the main result of this section. The theorem is weaker
than Theorem 4.1—this is to be expected because it applies to a general class of
numerical methods, including those that have been shown in Theorems 3.1 and
3.2 to have poor long-time second moment behavior. The theorem shows that by
taking ∆t sufficiently small it is possible to guarantee any number of near sign
changes with probability close to one. The proof uses only the finite-time strong
convergence properties of the methods.

Theorem 5.1. Suppose that an Itô-Taylor scheme of strong order γ ≥ 1/2 is
applied to the linear stochastic oscillator (1)–(2) with x0 = 1, y0 = 0. Then given
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ǫ ∈ (0, 1) and N > 0 there exists a constant ∆t∗ and a set of non-overlapping
subintervals Si, such that for all ∆t ≤ ∆t∗

P

(
|x̂(ti)| ≤ ǫ for some ti ∈ Si, i = 1, 2, . . . , N

)
≥ 1 − ǫ. (19)

Proof. Given ǫ and N , set ∆T = π log2

(
4N
ǫ

)
and take arbitrary non-overlapping

subintervals Si = [αi, βi] of length ∆T . Note that ∆T ≥ π. Let ti denote the first
time the true solution x(t) crosses zero for t ≥ αi. If the values x(αi), ẋ(αi), i =
1, 2, . . . , N, are known, we can regard the true solution on each interval as a
new solution of (1)–(2) starting from initial values x(αi), ẋ(αi). Hence, from
Lemma 5.1, the probability that the true solution has at least one zero on Si

satisfies

P(ti ∈ Si) = P(ti ≤ βi) > 1 − 2

2∆T/π
.

Let us denote by Ai the event that the true solution crosses zero at least once on
Si, that is

Ai = {x(ti) = 0, ti ∈ Si}. (20)

Then we have

P

(
x(ti) = 0 for some ti ∈ Si, i = 1, 2, . . . , N

)
= P(A1 ∩ A2 ∩ · · · ∩ AN)

= E [IA1
IA2

· · · IAN
],

where I denotes the indicator function. Letting FαN
be the sub-σ-algebra contain-

ing all information up to the point αN , and introducing conditional expectation,
we get

E [IA1
IA2

· · · IAN
] = E

(
E [IA1

IA2
· · · IAN

|FαN
]

)

= E

(
IA1

IA2
· · · IAN−1

E [IAN
|FαN

]

)

= E

(
IA1

IA2
· · · IAN−1

E [IAN
|x(αN ), ẋ(αN)]

)

>

(
1 − 2

2∆T/π

)
E [IA1

IA2
· · · IAN−1

].

Continuing this argument by introducing FαN−1
,FαN−2

, . . ., and using 2
2∆T/π < 1,

we get

P

(
x(ti) = 0 for some ti ∈ Si, i = 1, 2, . . . , N

)
>

(
1 − 2

2∆T/π

)N

≥
(

1 − 2N

2∆T/π

)
.

(21)
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Applying the Chebyshev inequality in (17), with T := sup{t : t ∈ Si for some 1 ≤
i ≤ N}, we have

P( sup
t∈[0,T ]

|x̂(t) − x(t)| ≥ ǫ) ≤ C∆tγ

ǫ
.

Equivalently,

P( sup
t∈[0,T ]

|x̂(t) − x(t)| < ǫ) ≥ 1 − C∆tγ

ǫ
≥ 1 − C∆t∗γ

ǫ
, (22)

for ∆t ≤ ∆t∗, where ∆t∗ ≤ 1 is yet to be defined.

Using (21) and (22), we have

P

(
|x̂(ti)| ≤ ǫ for some ti ∈ Si, i = 1, 2, . . . , N

)
≥

P

(
{x(ti) = 0 for some ti ∈ Si, i = 1, 2, . . . , N} ∩ { sup

t∈[0,T ]

|x̂(t) − x(t)| < ǫ}
)

≥ P

(
x(ti) = 0 for some ti ∈ Si, i = 1, 2, . . . , N

)
+

+ P

(
sup

t∈[0,T ]

|x̂(t) − x(t)| < ǫ

)
− 1

≥
(

1 − C∆t∗γ

ǫ

)
+

(
1 − 2N

2∆T/π

)
− 1

= 1 − C∆t∗γ

ǫ
− 2N

2∆T/π
. (23)

Choosing

∆t∗ = min

((
2Nǫ

C2∆T/π

)1/γ

, 1

)

,

we find that the right-hand side of (23) is bounded below by 1−ǫ, as required.
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