Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Influence of autochthonous dissolved organic carbon and nutrient limitation on alachlor biotransformation in aerobic aquatic systems

Ensz, A.P. and Knapp, C.W. and Graham, D.W. (2003) Influence of autochthonous dissolved organic carbon and nutrient limitation on alachlor biotransformation in aerobic aquatic systems. Environmental Science and Technology, 37 (18). pp. 4157-4162. ISSN 0013-936X

Full text not available in this repository. Request a copy from the Strathclyde author


Much work has suggested that the rate of attenuation of water-soluble organic contaminants in aerobic aquatic systems is dependent on the level of secondary nutrients in the water column. For example, the decay rate of alachlor, a common herbicide, was over 10 times higher under hypereutrophic compared with oligotrophic water conditions. It has been presumed that higher water column nutrient levels produce larger microbial communities, resulting in higher rates of alachlor cometabolism. However, most earlier field studies only assessed alachlor fate in systems with full light exposure (FLE). Therefore, new experiments were performed to assess how variations in light level affect alachlor cometabolism in such systems. Twelve tank mesocosms were maintained using identical nitrogen (N) and phosphorus (P) supply conditions: four units with full light exposure (100% FILE), four with partial shading (19.3% FLE), and four with near complete shading (0.5% FLE). Alachlor half-lives were found to vary broadly, from 50 to 60 days in higher light units to >180 days in the 0.5% FLE units. Nutrient analysis indicated that the low light units were severely carbon (C)-limited for microbial decomposition, whereas the other units had excess C relative to N and P. Apparently, reduced light levels cause decreased production of bioavailable C for decomposition, which significantly reduces alachlor cometabolism. The data suggest that water column nutrient levels only correlate with the alachlor decay rate when light levels are high, and that the biodegradable carbon supply must be considered when the fate of water-soluble contaminants in aerobic aquatic systems is assessed.