Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Using mass reconstruction along a four-site transect as a method to interpret PM10 in West-Central Scotland, United Kingdom

Gibson, M D and Heal, M R and Bache, D H and Hursthouse, A S and Beverland, I J and Craig, Susanne E. and Clark, Colin F and Jackson, Mike H and Guernsey, Judith R and Jones, Chris (2009) Using mass reconstruction along a four-site transect as a method to interpret PM10 in West-Central Scotland, United Kingdom. Journal of the Air and Waste Management Association, 59 (12). pp. 1429-1436. ISSN 1047-3289

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Concurrent 24-hr samples of particulate matter of median aerodynamic diameter less than 10 m (PM10) were collected over a 10-day period in August 2000 at four sites along a transect in west-central Scotland, UK (passing from the coast through the city of Glasgow) in line with the prevailing southwesterly wind. Each sample was analyzed for chloride (Cl), nitrate (NO3 ), sulfate (SO4 2), ammonium (NH4 ), calcium (Ca2), iron (Fe), and organic hydrocarbon material (OHM). The contribution from elemental carbon (EC) was estimated. Sampling days were categorized according to local wind direction, synoptic flow, and air mass back trajectories. Chemical mass balance (CMB) reconstruction of the following PM10 components was derived for each wind direction group and at each transect location: ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), sodium chloride (NaCl), gypsum (CaSO4), OHM, EC, soil/surface dusts, and particle- bound water. The results showed that PM10 at the coastal site was dominated by the marine background (NaCl) compared with the urban sites, which were dominated by local primary (EC and soil/resuspension) and secondary sources (NH4NO3, (NH4)2SO4, and OHM). There was evidence of Cl depletion as NaCl aerosol passes over urban areas. There was also evidence of longrange transport of primary PM10 (EC and OHM); for example, at the coastal site from transport from Ireland. The work demonstrates how the general approach of combining mass reconstruction along a transect with other information such as wind/air-mass direction generates insight into the sources contributing to PM10 over a more extended spatial scale than at a single receptor.