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The problem of variational data assimilation for a nonlinear evolution model is formulated
as an optimal control problem to find unknown parameters such as distributed model coef-
ficients or boundary conditions. The equation for the optimal solution error is derived
through the errors of the input data (background and observation errors), and the optimal
solution error covariance operator through the input data error covariance operators,
respectively. The quasi-Newton BFGS algorithm is adapted to construct the covariance
matrix of the optimal solution error using the inverse Hessian of an auxiliary data assim-
ilation problem based on the tangent linear model constraints. Preconditioning is applied
to reduce the number of iterations required by the BFGS algorithm to build a quasi-Newton
approximation of the inverse Hessian. Numerical examples are presented for the one-
dimensional convection–diffusion model.

1. Introduction

The methods of data assimilation (DA) have become an important tool for analysis of complex physical phenomena in
various fields of science and technology. These methods allow us to combine mathematical models, data resulting from
instrumental observations and a priori information. The problems of variational DA can be formulated as optimal control
problems (e.g. [10,12]) to find unknown model parameters such as initial and/or boundary conditions, right-hand sides in
the model equations (forcing terms), and distributed coefficients. A necessary optimality condition reduces an optimal con-
trol problem to an optimality system which includes inexact input functions; hence the error in the optimal solution. In this
paper, assuming a perfect model, we consider two types of input errors: the background error and the observation error. It is
an important theoretical and practical task to evaluate statistical properties of the optimal solution error. For example, its
covariance can be used for estimating the efficiency of DA in terms of reducing uncertainty in model parameters and, there-
fore, in the model output.

The error in the optimal solution can be derived through the errors in the input data using the Hessian of an auxiliary DA
problem [6,11]. If errors in the input data are random and subjected to the normal distribution, then for a linearized finite-
dimensional problem (tangent linear approximation of the discretized model) the covariance matrix of the analysis (optimal
estimation of the initial condition) error is given by the inverse of the Hessian matrix of the cost functional (see e.g.
[7,9,17,21,22]). In [6], a similar result was obtained for the continuous (both in time and space) operator formulation. We
have shown that in the nonlinear case the analysis error covariance operator can be approximated by the inverse Hessian



of the auxiliary DA problem based on the tangent linear model (TLM) constraints. We have also demonstrated that this
approximation could be sufficiently accurate even though the tangent linear hypothesis is not valid.

This paper presents a generalization of the theoretical results reported in [6] to parameter estimation problems for a non-
linear evolution model. These problems are common inverse problems considered in geophysics [20,25] and in engineering
applications [1]. Here we derive the relationship between the optimal solution error covariance and the inverse Hessian of
the auxiliary DA problem in a continuous operator form. The algorithm based on the quasi-Newton BFGS method (also re-
ported in [6]) is adapted for constructing the optimal solution error covariance matrix for parameter estimation problems.
This process is greatly accelerated by preconditioning the Hessian of the auxiliary DA problem, whereas the preconditioner is
also defined in a general operator form.

For numerical analysis we use the one-dimensional (1D) nonlinear convection–diffusion model. The algorithm was ap-
plied to compute the covariance matrix for the diffusion coefficient and boundary flux estimation problems. The numerical
results reveal interesting features of these problems in terms of identifiability, even for a simple evolution model. All numer-
ical results have been verified using the fully nonlinear ensemble method [6]. Thus, we confirm that in the nonlinear case the
optimal solution error covariance can be approximated by the inverse Hessian of the auxiliary DA problem (‘H-covariance’)
beyond the validity of the tangent linear hypothesis.

The generalization of the theoretical results to the case of model errors is given in [19]. The relevant work discussing an
estimate of posterior error fields in DA is given in [18].

This paper is organized as follows. In Section 2, we give the statement of the variational DA problem for a nonlinear evo-
lution model to estimate the model parameters. In Section 3, the equation for the optimal solution error is derived through
the errors of the input data. In Section 4 we derive the formulas for the optimal solution error covariance operator through
the covariance operators of the input data errors using the Hessian of the auxiliary DA problem. A general case is considered
in Section 4.1. Then, it is illustrated by the examples given for the 1D convection–diffusion model: the diffusion coefficient
estimation problem is considered in Section 4.2 and the boundary flux estimation problem in Section 4.3. Details of numer-
ical implementation are presented in Section 5 (for basic implementation details we also refer to [6]). We describe: in Sec-
tion 5.1 a method for specifying the background error covariance matrix, in Section 5.2 – the preconditioning of the Hessian
of the auxiliary DA problem and in Section 5.3 – other relevant implementation issues. Numerical analysis is presented in
Section 6. In Section 6.1 we analyse the diffusion coefficient estimation problem, in Section 6.2 – the boundary flux estima-
tion problem. In Section 6.3 we compare the convergence rates achieved with and without preconditioning for some numer-
ical tests performed earlier. The main results are discussed in the Conclusions.

From this point on we shall refer to ‘optimal solution error covariance/variance’ simply as ‘covariance/variance’.

2. Statement of the problem

Consider the mathematical model of a physical process that is described by the evolution problem

@u
@t

¼ Fðu; kÞ þ f ; t 2 ð0; TÞ;
ujt¼0 ¼ u;

(
ð2:1Þ

where u ¼ uðtÞ is the unknown function belonging for any t to a Hilbert space X;u 2 X; F is a nonlinear operator mapping
Y � Yp into Y with Y ¼ L2ð0; T;XÞ; k � kY ¼ ð�; �Þ1=2Y ;Yp is a Hilbert space (space of control parameters, or control space),
f 2 Y . Suppose that for given u 2 X; f 2 Y and k 2 Yp there exists a unique solution u 2 Y to (2.1). The function k is an un-
known model parameter.

Let us introduce the functional

SðkÞ ¼ 1
2

V1ðk� kbÞ; k� kbð ÞYp
þ 1
2

V2ðCu�uobsÞ; Cu�uobsð ÞYobs
; ð2:2Þ

where kb 2 Yp is a prior (background) function, uobs 2 Yobs is a prescribed function (observational data), Yobs is a Hilbert space
(observation space), C : Y ! Yobs is a linear bounded observation operator, V1 : Yp ! Yp and V2 : Yobs ! Yobs are symmetric
positive definite bounded operators.

Let us consider the following DA problem with the aim to estimate the parameter k: for given u 2 X; f 2 Y , find k 2 Yp and
u 2 Y such that they satisfy (2.1), and on the set of solutions to (2.1), the functional SðkÞ takes the minimum value, i.e.

@u
@t

¼ Fðu; kÞ þ f ; t 2 ð0; TÞ;
ujt¼0 ¼ u;

SðkÞ ¼ inf
v2Yp

SðvÞ:

8
>><
>>:

ð2:3Þ

We suppose that the solution of (2.3) exists. Let us note that the solvability of the parameter estimation problems (or iden-
tifiability) has been addressed, e.g., in [2,14]. To derive the optimality system, we assume the solution u and the operator
Fðu; kÞ in (2.1) and (2.2) are regular enough, and for v 2 Yp find the gradient of the functional S with respect to k:

S0ðkÞv ¼ ðV1ðk� kbÞ;vÞYp
þ ðV2ðCu�uobsÞ;C/ÞYobs

¼ ðV1ðk� kbÞ;vÞYp
þ ðC�V2ðCu�uobsÞ;/ÞY ; ð2:4Þ



where / is the solution to the problem:

@/
@t
¼ F 0

uðu; kÞ/þ F 0
kðu; kÞv ; t 2 ð0; TÞ;

/jt¼0 ¼ 0;

(
ð2:5Þ

Here F 0
uðu; kÞ : Y ! Y ; F 0

kðu; kÞ : Yp ! Y are the Frechet derivatives of Fwith respect to u and k, correspondingly, and C� is
the adjoint operator to C defined by ðCu;wÞYobs

¼ ðu;C�
wÞY ; u 2 Y; w 2 Yobs.

Let us consider the adjoint operator ðF 0
uðu; kÞÞ� : Y ! Y and introduce the adjoint problem:

� @u�

@t
� ðF 0

uðu; kÞÞ�u� ¼ �C�V2ðCu�uobsÞ; t 2 ð0; TÞ;
u�jt¼T ¼ 0:

(
ð2:6Þ

Then (2.4) with (2.5) and (2.6) gives

S0ðkÞv ¼ ðV1ðk� kbÞ;vÞYp
� ðu�; F 0

kðu; kÞvÞY ¼ ðV1ðk� kbÞ; vÞYp
� ððF 0

kðu; kÞÞ�u�;vÞYp
; ð2:7Þ

where ðF 0
kðu; kÞÞ� : Y ! Yp is the adjoint operator to F 0

kðu; kÞ. Therefore, the gradient of S is defined by

S0ðkÞ ¼ V1ðk� kbÞ � ðF 0
kðu; kÞÞ�u�:

From (2.4)–(2.6) and (2.7) we get the optimality system (the necessary optimality conditions):

@u
@t

¼ Fðu; kÞ þ f ; t 2 ð0; TÞ;
ujt¼0 ¼ u;

(
ð2:8Þ

� @u�

@t
� ðF 0

uðu; kÞÞ�u� ¼ �C�V2ðCu�uobsÞ; t 2 ð0; TÞ;
u�jt¼T ¼ 0;

(
ð2:9Þ

V1ðk� kbÞ � ðF 0
kðu; kÞÞ�u� ¼ 0: ð2:10Þ

We assume that the system (2.8)–(2.10) has a unique solution. Suppose that kb ¼ �kþ n1; uobs ¼ C �uþ n2, where
n1 2 Yp; n2 2 Yobs, and �u is the (‘‘true”) solution to the problem (2.1) with k ¼ �k:

@ �u
@t

¼ Fð �u; �kÞ þ f ; t 2 ð0; TÞ;
�ujt¼0 ¼ u:

(
ð2:11Þ

The functions n1; n2 represent the errors of the input data kb and uobs (background and observation error, respectively).
If the observation operator C is nonlinear, i.e. Cu ¼ CðuÞ, then the right-hand-side of the adjoint Eq. (2.9) contains ðC0

uÞ
�

instead of C0� and all the analysis presented below is similar.

3. Equation for the optimal solution error

Let us derive the equation for the optimal solution error through the input data errors. Let du ¼ u� �u; dk ¼ k� �k. Let us
suppose that F is continuously Frechet differentiable, and then there exist ~u ¼ �uþ sðu� �uÞ; ~k ¼ �kþ sðk� �kÞ; s 2 ½0;1�;
such that the Taylor–Lagrange formula [13] is valid: Fðu; kÞ � Fð�u; �kÞ ¼ F 0

uð ~u; ~kÞduþ F 0
kð ~u; ~kÞdk. Then, from (2.11) and the

optimality system (2.8)–(2.10), we obtain

@du
@t

� F 0
uð ~u; ~kÞdu ¼ F 0

kð ~u; ~kÞdk; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

(
ð3:1Þ

� @u�

@t
� ðF 0

uðu; kÞÞ�u� ¼ �C�V2ðCdu� n2Þ; t 2 ð0; TÞ;
u�jt¼T ¼ 0;

(
ð3:2Þ

V1ðdk� n1Þ � ðF 0
kðu; kÞÞ�u� ¼ 0: ð3:3Þ

Note that ~u ¼ �uþ sdu; u ¼ �uþ du; ~k ¼ �kþ sdk; k ¼ �kþ dk. The system (3.1)–(3.3) may be written in the form:

@du
@t

� F 0
uð �u; �kÞdu ¼ F 0

kð �u; �kÞdkþ n3; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

(
ð3:4Þ

� @u�

@t
� ðF 0

uð �u; �kÞÞ�u� ¼ �C�V2ðCdu� n2Þ þ n4; t 2 ð0; TÞ;
u�jt¼T ¼ 0;

(
ð3:5Þ

V1ðdk� n1Þ � ðF 0
kð�u; �kÞÞ�u� ¼ n5; ð3:6Þ



where

n3 ¼ ½F 0
uð ~u; ~kÞ � F 0

uð �u; �kÞ�duþ ½F 0
kð~u; ~kÞ � F 0

kð�u; �kÞ�dk;
n4 ¼ ½ðF 0

uðu; kÞÞ� � ðF 0
uð �u; �kÞÞ��u�; n5 ¼ ½ðF 0

kðu; kÞÞ� � ðF 0
kð�u; �kÞÞ��u�:

For fixed niði ¼ 1;2;3;4;5Þ, excluding du and u� from (3.4)–(3.6), we derive a single equation for dk (see (3.17) below). Let us
introduce the operator H : Yp ! Yp defined by the successive solutions of the following problems:

@w
@t
� F 0

uð �u; �kÞw ¼ F 0
kð�u; �kÞv ; t 2 ð0; TÞ;

wjt¼0 ¼ 0;

(
ð3:7Þ

� @w�

@t
� ðF 0

uð �u; �kÞÞ�w� ¼ �C�V2Cw; t 2 ð0; TÞ;
w�jt¼T ¼ 0;

(
ð3:8Þ

Hv ¼ V1v � ðF 0
kð�u; �kÞÞ�w�: ð3:9Þ

We show next that H is the Hessian of an auxiliary data assimilation problem based on the tangent linear model constraints.
Below we introduce four auxiliary operators R1;R2;R3;R4. Let R1 ¼ V1. Let us introduce the operator R2 : Yobs ! Yp acting on
the functions g 2 Yobs according to the formula

R2g ¼ ðF 0
kð �u; �kÞÞ�h�; ð3:10Þ

where h� is the solution to the adjoint problem

� @h�

@t
� ðF 0

uð �u; �kÞÞ�h� ¼ C�V2g; t 2 ð0; TÞ;
h�jt¼T ¼ 0:

(
ð3:11Þ

The operator R3 : Y ! Yp is defined on the functions q 2 Y as follows:

@h1
@t

� F 0
uð �u; �kÞh1 ¼ q; t 2 ð0; TÞ;

h1jt¼0 ¼ 0;

(
ð3:12Þ

� @h�1
@t

� ðF 0
uð�u; �kÞÞ�h�1 ¼ �C�V2Ch1; t 2 ð0; TÞ;

h�1jt¼T ¼ 0;

(
ð3:13Þ

R3q ¼ ðF 0
kð�u; �kÞÞ�h�1: ð3:14Þ

The operator R4 : Y ! Yp is defined on the functions q 2 Y as

� @h�2
@t

� ðF 0
uð�u; �kÞÞ�h�2 ¼ q; t 2 ð0; TÞ;

h�2jt¼T ¼ 0;

(
ð3:15Þ

R4q ¼ ðF 0
kð�u; �kÞÞ�h�2: ð3:16Þ

From (3.7)–(3.16) we conclude that the system (3.4)–(3.6) is equivalent to the single equation for dk:

Hdk ¼ R1n1 þ R2n2 þ R3n3 þ R4n4 þ n5: ð3:17Þ

Each operator Ri defines the contribution of the corresponding error ni into the right-hand-side of the error Eq. (3.17). This is
the exact equation for dk. Under the hypothesis that H is invertible, we get

dk ¼ T1n1 þ T2n2 þ T3n3 þ T4n4 þ T5n5; ð3:18Þ

where T i ¼ H�1Ri; i ¼ 1;2;3;4; T5 ¼ H�1; T1 : Yp ! Yp; T2 : Yobs ! Yp; T3; T4 : Y ! Yp.
The operators T iði ¼ 1;2;3;4;5Þ are bounded, because the operators Ri and the inverse Hessian H�1 are supposed to be

bounded. Each operator T i can be regarded as an error transfer operator which relates the corresponding error ni to the opti-
mal solution error dk.

Let us note that the functions u; k; ~u; ~k in 3.1, 3.2 and 3.3 depend on n1; n2, so as a result, the terms T3n3; T4n4; T5n5 also
depend nonlinearly on n1; n2, and it is not possible to represent dk through n1; n2 in an explicit form. To derive from (3.18) the
covariance operator of dk, we need to introduce some approximation of (3.18). Since ~u ¼ �uþ sdu; u ¼ �uþ du; ~k ¼ �kþ
sdk; k ¼ �kþ dk, we assume that

T3n3 � 0; T4n4 � 0; T5n5 � 0; ð3:19Þ

then (3.18) reduces to

dk � T1n1 þ T2n2; ð3:20Þ

which is equivalent to the system:



@du
@t

� F 0
uð �u; �kÞdu ¼ F 0

kð �u; �kÞdk; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

(
ð3:21Þ

� @u�

@t
� ðF 0

uð �u; �kÞÞ�u� ¼ �C�V2ðCdu� n2Þ; t 2 ð0; TÞ;
u�jt¼T ¼ 0;

(
ð3:22Þ

V1ðdk� n1Þ � ðF 0
kð�u; �kÞÞ�u� ¼ 0: ð3:23Þ

Taking into account the definition of n3; n4; n5; it can be seen that the assumption (3.19) is equivalent to the first-order
approximation of the Taylor–Lagrange formula under the hypothesis that F is twice continuously Frechet differentiable
[13]. Using this formula, the errors n3; n4 and n5, may be expressed through the second derivatives of F, and the values
of the norms of T3n3; T4n4; T5n5 can be estimated, thus giving the possibility that the linearization error can be
assessed.

For fixed �k; �u, the problem (3.21)–(3.23) is the necessary optimality condition to the following DA problem: find dk and
du such that

@du
@t

� F 0
uð �u; �kÞdu ¼ F 0

kð �u; �kÞdk; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

S1ðdkÞ ¼ inf
v2Yp

S1ðvÞ;

8
>>><
>>>:

ð3:24Þ

where

S1ðdkÞ ¼
1
2
ðV1ðdk� n1Þ; dk� n1ÞYp

þ 1
2
ðV2ðCdu� n2Þ; Cdu� n2ÞYobs

: ð3:25Þ

The Hessian H of the functional (3.25) is defined on v 2 Yp by (3.7)–(3.9). Note that for n2 ¼ 0 the operator H coincides with
the Hessian H of the original nonlinear DA problem on the exact solution �k. The Hessian H acts in Yp as a self-adjoint oper-
ator with domain of definition DðHÞ ¼ Yp. Moreover, because of the properties of V1;V2, the operator H is always positive
definite, and hence invertible.

The derivation here follows the reasoning of [6], where the initialization problem was considered. However, here the
optimality system and, subsequently, definition of the Hessian H (via differential problems) are different from [6]. In
particular, they involve the adjoints to the Frechet derivatives of F both with respect to the solution u and the param-
eter k.

4. Covariance operator as the inverse Hessian

4.1. General case

Consider the error Eq. (3.20), where T i ¼ H�1Ri; i ¼ 1;2; T1 : Yp ! Yp; T2 : Yobs ! Yp. Below we suppose that the errors
n1; n2 are normally distributed, unbiased, and mutually uncorrelated. Let us denote by Vdk the covariance operator
Vdk� ¼ E½ð�; dkÞYp

dk�, and by Vni
the covariance operator of the corresponding error ni; i ¼ 1;2, i.e. Vn1 � ¼E½ð�; n1ÞYp

n1�;
Vn2 � ¼ E½ð�; n2ÞYobs

n2�, where E is the expectation. For V1 and V2 in (2.2), we take V1 ¼ V�1
n1
; V2 ¼ V�1

n2
. From (3.20) we get

Vdk � V :¼ T1Vn1T
�
1 þ T2Vn2T

�
2: ð4:1Þ

To find the operator V, we need to construct the operators T iVni
T�
i ; i ¼ 1;2.

Consider the operator T1Vn1T
�
1. Since T1 ¼ H�1R1, we have T1Vn1T

�
1 ¼ H�1R1Vn1R1H

�1. Moreover, if V1 ¼ V�1
n1
, then

T1Vn1T
�
1 ¼ H�1R1H

�1: ð4:2Þ

Consider the operator T2Vn2T
�
2. Since T2 ¼ H�1R2, then

T2Vn2T
�
2 ¼ H�1R2Vn2R

�
2H

�1:

To determine R�
2, consider the inner product ðR2g; pÞYp

; g 2 Yobs; p 2 Yp. From (3.10) and (3.11),

ðR2g;pÞYp
¼ ððF 0

kð�u; �kÞÞ�h�;pÞYp
¼ ðC�V2g;/ÞY ¼ ðg;R�

2pÞYobs
;

where R�
2p ¼ V2C/, and / is the solution to the problem

@/
@t
� F 0

uð �u; �kÞ/ ¼ F 0
kð�u; �kÞp; t 2 ð0; TÞ;

/jt¼0 ¼ 0:

(
ð4:3Þ



Thus, the operator T2Vn2T
�
2 is defined by successive solutions of the following problems (for a given v 2 Yp):

Hp ¼ v ; ð4:4Þ
@/
@t
� F 0

uð �u; �kÞ/ ¼ F 0
kð�u; �kÞp; t 2 ð0; TÞ;

/jt¼0 ¼ 0;

(
ð4:5Þ

� @h�

@t
� ðF 0

uð �u; �kÞÞ�h� ¼ C�V2Vn2V2C/; t 2 ð0; TÞ
h�jt¼T ¼ 0;

(
ð4:6Þ

Hw ¼ ðF 0
kð �u; �kÞÞ�h�; ð4:7Þ

then

T2Vn2T
�
2v ¼ w: ð4:8Þ

If V2 ¼ V�1
n2
, then C�V2Vn2V2C ¼ C�V2C and from (4.6) and (4.7) we obtain that

ðF 0
kð �u; �kÞÞ�h� ¼ Hp� R1p;

where H is the Hessian defined by 3.7, 3.8 and 3.9. From the definition of R2, we then get

R2Vn2R
�
2 ¼ H � R1

and

T2Vn2T
�
2 ¼ H�1R2Vn2R

�
2H

�1 ¼ H�1ðH � R1ÞH�1: ð4:9Þ

From (4.2) and (4.9) the result for V follows:

V ¼ T1Vn1T
�
1 þ T2Vn2T

�
2 ¼ H�1HH�1 ¼ H�1; ð4:10Þ

i.e. the covariance operator Vdk is approximately the inverse Hessian. By this reason we refer to V as the H-covariance.
Therefore, for the parameter estimation problem we obtain the same result as for the initialization (initial-value control)

problem. It means that the numerical algorithm for computing the covariance matrix presented in [6] can be used in the case
under consideration. Below the theory developed is illustrated by the examples given for the 1D convection–diffusion model.

4.2. Diffusion coefficient estimation

Let us consider the following evolution model:

@u
@t

¼ Fðu; kÞ þ f ; t 2 ð0; TÞ; x 2 ð0;1Þ;
ujt¼0 ¼ u;

�k @u
@x
jx¼0 ¼ 0; k @u

@x
jx¼1 ¼ 0;

8
>><
>>:

ð4:11Þ

where Fðu; kÞ is the 1D convection–diffusion operator as follows:

Fðu; kÞ ¼ � @ðwuÞ
@x

þ @

@x
k
@u
@x

� �
:

Above, k ¼ kðxÞ is the unknown diffusion coefficient, u ¼ uðxÞ, w ¼ wðt; xÞ and f ¼ f ðt; xÞ are prescribed functions. Consider
the functional SðkÞ defined by (2.2) with Yp ¼ X ¼ L2ð0;1Þ, where k ¼ k. The DA problem is as follows: find the functions
k ¼ kðxÞ and u ¼ uðt; xÞ such that they satisfy (4.11), and on the set of solutions to (4.11), the functional SðkÞ takes the min-
imum value. The space Yobs and the corresponding observation term are the same as in (2.2). Note that Yobs can be the whole
space Y ¼ L2ð0; T;XÞ, or its subspace, and depends on the choice of the observation operator C (related to the observation
scheme). The details of specific observation schemes used in numerical experiments are discussed in Section 6.

The DA problem stated above has the same form as (2.3), therefore all results presented in Section 4.1 are directly appli-
cable. Let us also notice that even though the evolution model (4.11) is linear in u (k does not depend on u), the DA problem
is nonlinear, because the operator Fðu; kÞ is nonlinear.

The gradient of the functional S is defined by (2.4), where / is the solution to (2.5) satisfying the homogeneous boundary
conditions:

@/

@x
jx¼0 ¼ @/

@x
jx¼1 ¼ 0;

and the operators F 0
uðu; kÞ; F 0

kðu; kÞ are defined by

F 0
uðu; kÞ/ ¼ � @ðw/Þ

@x
þ @

@x
k
@/

@x

� �
; F 0

kðu; kÞv ¼ @

@x
v
@u
@x

� �
: ð4:12Þ



Introducing the adjoint problem (2.6) with

ðF 0
uðu; kÞÞ�u� ¼ w

@u�

@x
þ @

@x
k
@u�

@x

� �
; ð4:13Þ

and boundary conditions

wu� þ kðxÞ @u
�

@x
¼ 0; x ¼ 0; x ¼ 1;

we get

S0ðkÞ ¼ V1ðk� kbÞ þ
Z T

0

@u
@x

@u�

@x
dt; ð4:14Þ

and the optimality system 2.8, 2.9 and 2.10 is valid with

ðF 0
kðu; kÞÞ�u� ¼ �

Z T

0

@u
@x

@u�

@x
dt: ð4:15Þ

Due to (4.10), the covariance operator is approximately the inverse Hessian. The definition of the Hessian H by 3.7, 3.8 and
3.9 involves the operators F 0

uðu; kÞ; F 0
kðu; kÞ; ðF 0

uðu; kÞÞ�; ðF 0
kðu; kÞÞ� defined by (4.12)–(4.14) and (4.15).

4.3. Boundary flux estimation

Let us consider the following evolution model:

@u
@t

¼ FðuÞ þ f ; t 2 ð0; TÞ; x 2 ð0;1Þ;
ujt¼0 ¼ u;

�kðuÞ @u
@x
jx¼0 ¼ u1; kðuÞ @u

@x
jx¼1 ¼ u2;

8
><
>:

ð4:16Þ

where FðuÞ is the 1D nonlinear convection–diffusion operator as follows:

FðuÞ ¼ � @ðwuÞ
@x

þ @

@x
kðuÞ @u

@x

� �
:

Above, u1 and u2 are the unknown boundary fluxes, u ¼ uðxÞ; w ¼ wðt; xÞ and f ¼ f ðt; xÞ are prescribed functions, k ¼ kðuÞ is a
constitutive model for the diffusion coefficient. We consider the functional (2.2) in the form:

Sðu1;u2Þ ¼
1
2

X2

i¼1

V ðiÞ
1 ðui � ui;bÞ;ui � ui;b

� �
L2ð0;TÞ

þ 1
2

V2ðCu�uobsÞ;Cu�uobsð ÞYobs
; ð4:17Þ

where ui;b 2 L2ð0; TÞ are prescribed functions (background), V ðiÞ
1 : L2ð0; TÞ ! L2ð0; TÞ are symmetric positive definite opera-

tors, i ¼ 1;2. So, as a control space Yp (the space of parameters introduced above in Section 2), we can take
Yp ¼ L2ð0; TÞ � L2ð0; TÞ. Let V1 : L2ð0; TÞ � L2ð0; TÞ ! L2ð0; TÞ � L2ð0; TÞ be 2� 2 block-diagonal operator matrix with V ð1Þ

1

and V ð2Þ
1 as diagonal blocks. The DA problem can now be formulated as follows: find the functions

u1 ¼ u1ðtÞ; u2 ¼ u2ðtÞ; u ¼ uðt; xÞ such that they satisfy (4.16), and on the set of solutions to (4.16), the functional
Sðu1;u2Þ takes the minimum value.

Using a weak formulation of (4.16), the problem stated above may be written in the form (2.3) with k ¼ ðu1;u2ÞT 2 Yp, i.e.
boundary conditions become a part of the operator F definition. Therefore all results presented in Section 4.1 are valid in this
case. However, a weak formulation is not given here because it is somewhat bulky and would only complicate the presen-
tation. Instead, we present the auxiliary DA problem (and define all operators involved in this definition) in the usual way
with the boundary conditions formulated separately.

Below we assume the solution and the input functions in (4.16) and (4.17) to be regular enough. For v ¼ ðv1;v2ÞT the gra-
dient of the functional S is defined by

S0ðu1;u2Þv ¼
X2

i¼1

V ðiÞ
1 ðui � ui;bÞ;v i

� �
L2ð0;TÞ

þ V2ðCu�uobsÞ;C/ð ÞYobs
;

where / is the solution to the problem:

@/
@t
¼ F 0ðuÞ/; t 2 ð0; TÞ; x 2 ð0;1Þ

/jt¼0 ¼ 0;

�kðuÞ @/
@x
jx¼0 ¼ v1; kðuÞ @/

@x
jx¼1 ¼ v2;

8
><
>:

ð4:18Þ

and



F 0ðuÞ/ ¼ � @ðw/Þ
@x

þ @2ðkðuÞ/Þ
@x2

:

Using the adjoint problem

� @u�

@t
� ðF 0ðuÞÞ�u� ¼ �C�V2ðCu�uobsÞ; t 2 ð0; TÞ

u�jt¼T ¼ 0;

wu� þ kðuÞ @u�

@x
¼ 0; x ¼ 0; x ¼ 1;

8
><
>:

ð4:19Þ

with

ðF 0ðuÞÞ�u� ¼ w
@u�

@x
þ kðuÞ @

2u�

@x2
;

we get the gradient of S as the vector-function:

S0ðu1;u2Þ ¼ ðV ð1Þ
1 ðu1 � u1;bÞ �u�jx¼0;V

ð2Þ
1 ðu2 � u2;bÞ �u�jx¼1Þ

T :

Then, the optimality system involves (4.16) and (4.19), and the necessary optimality condition S0ðu1;u2Þ ¼ 0.
As follows from the theory developed above, the covariance operator is approximately the inverse Hessian of the follow-

ing auxiliary DA problem: find du1; du2 and du such that

@du
@t

� F 0ð �uÞdu ¼ 0; t 2 ð0; TÞ;
dujt¼0 ¼ 0;

�kð�uÞ @du
@x

jx¼0 ¼ du1; kð �uÞ @du
@x

jx¼1 ¼ du2;

S1ðdu1; du2Þ ¼ inf
v1 ;v2

S1ðv1;v2Þ;

8
>>>><
>>>>:

ð4:20Þ

where

S1ðdu1; du2Þ ¼
1
2

X2

i¼1

V ðiÞ
1 ðdui � ni;1Þ; dui � ni;1

� �
L2ð0;TÞ

þ 1
2

V2ðCdu� n2Þ;Cdu� n2ð ÞYobs
: ð4:21Þ

The Hessian H of the functional (4.21) is defined on v ¼ ðv1;v2ÞT by the successive solutions of the following problems:

@w
@t
� F 0ð �uÞw ¼ 0; t 2 ð0; TÞ;

wjt¼0 ¼ 0;

�kð �uÞ @w
@x
jx¼0 ¼ v1; kð �uÞ @w

@x
jx¼1 ¼ v2;

8
><
>:

ð4:22Þ

� @w�

@t
� ðF 0ð �uÞÞ�w� ¼ �C�V2Cw; t 2 ð0; TÞ

w�jt¼T ¼ 0;

ww� þ kð �uÞ @w�

@x
¼ 0; x ¼ 0; x ¼ 1;

8
><
>:

ð4:23Þ

Hv ¼ ðV ð1Þ
1 v1 � w�jx¼0;V

ð2Þ
1 v2 � w�jx¼1Þ

T : ð4:24Þ

5. Details of numerical implementation

5.1. Background error covariance matrix

In the numerical implementation we deal with a finite-dimensional problem; hence we will assume that all operators in
the cost functional are matrices. In order to define (2.2) and (3.25) one needs to specify the weights V1 ¼ V�1

n1
and V2 ¼ V�1

n2
,

where Vn1 is the background error covariance matrix and Vn2 is the observation error covariance matrix. Those two usually
represent our a priori knowledge on the stochastic properties of errors.

Let us denote by r2 ¼ diagðVÞ the H-variance, r2
b ¼ diagðVn1 Þ the background error variance, and r2

obs ¼ diagðVn2 Þ the
observation error variance. We assume that the observation error values are not correlated (‘white noise’), i.e. Vn2 is a diag-
onal matrix. However, the same assumption about Vn1 would be too simplistic. Therefore, the off-diagonal elements must be
introduced into Vn1 .

In solving ill-posed inverse problems [23] the solution is often considered to be a smooth function which belongs to a
Sobolev space of certain order, e.g. W2

2. Let us assume that kðzÞ is a one-dimensional function of z and introduce two weight
functions aðzÞ; cðzÞ to determine the weight matrix V1. We define a finite-difference analog of the norm in W2

2 as follows:

kkk2
W2;m

2
¼
Xm

i¼1

aiffiffiffiffi
ci

p k2i þ
Xm�1

i¼2

aiffiffiffiffi
ci

p ciþ1=2ðkiþ1 � kiÞ � ci�1=2ðki � ki�1Þ
� �2

; ð5:1Þ



where ki;ai; ci are discrete values of functions kðzÞ;aðzÞ; cðzÞ at points zi; i ¼ 1; . . . ;m and m is the number of discretization
nodes.

Let us assume that the background error n1 is a smooth function, i.e. it belongs to W2
2. We define the symmetric weight

matrix V1 such that for any vector k the following relation holds:

kTV1k ¼ kkk2
W2;m

2
: ð5:2Þ

For all ai > 0, the first term in (5.1) guarantees that the weight matrix V1 is positive definite and the background error covari-
ance matrix Vn1 ¼ V�1

1 can be computed. The last one is also symmetric and positive definite. It can be seen from numerical
experiments that if the norm is defined by (5.1), then aðzÞ controls mainly rbðzÞ and cðzÞ controls the correlation radius
rðz� z0Þ for a wide range of c 2 ð0:1;100Þ.

This result is illustrated in Fig. 1, where the left panel shows r2
bðzÞ for different functions aðzÞ, while cðzÞ is defined as

follows:

cðzÞ ¼ 0:2þ 9:8ð1� cosð4pzÞÞ: ð5:3Þ

The right panel shows the background error covariance matrix which looks identical for all functions aðzÞ considered: a ¼ 1,
a ¼ 1þ 3z, and a ¼ ffiffiffi

c
p

. It can be seen in Fig. 1(left) that in the case a ¼ ffiffiffi
c

p
, which corresponds to constant value of weights

ai=
ffiffiffiffi
ci

p
in (5.1), the variance changes significantly with cðzÞ. However, if a is constant (case a ¼ 1), then the variance has a

nearly constant value, while the changes in the correlation radius are related mainly to cðzÞ. Therefore, the Eq. (5.1) can
be used to generate a family of covariances such that aðzÞ and cðzÞ define mainly the variance and the correlation radius,
respectively. Examples of the background error correlation functions, which correspond to different values of constant c
for a ¼ 1 are presented in Fig. 2, for the diffusion coefficient estimation problem (left) and for the boundary flux estimation
problem (right).

In the initial-value DA problem, the background function for the subsequent DA can be computed as an optimal solution
(analysis) evolved to the instant t ¼ T , i.e. asuðT; xÞ. Similarly, the background error covariance matrix could be computed as
the evolved analysis error covariance matrix. This is possible in principle, though difficult to implement for large-scale prob-
lems. For the boundary value estimation problem such a possibility does not generally exist. Therefore, the descriptions sim-
ilar to (5.1) might be a reasonable choice to define V1 or Vn1 . Let us note that this is a typical approach for certain applications
(for example, for inverse heat transfer problems [1]).

5.2. Preconditioning the Hessian

In [6] we have reported the numerical algorithm for computing the covariance matrix with the use of the quasi-Newton
BFGS method [4,16] for the case of the initial-value control problem. The same algorithm can be used in the case of param-
eter estimation.

Let us consider the problem (2.3). We approximate the covariance operator Vdk by the inverse Hessian of the auxiliary DA
problem (3.24) and (3.25). The inverse Hessian (or H-covariance) is computed as a collateral result of the BFGS iterations in
the course of solving the minimization problem (3.24) and (3.25). In order to obtain H�1 in the explicit form, the sequence of
the BFGS updates must be applied to the unity vectors. For particular details of this approach we refer to [6].
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The process of building the inverse Hessian by the BFGS algorithm can be accelerated by using a preconditioning. Usually,
a preconditioning is aimed to accelerate the convergence rate of a minimization procedure. However, this is a different task.
For example, the minimization procedure may converge long before any sensible approximation of the inverse Hessian is
built. Here we assume that the preconditioned Hessian would have much fewer eigenvalues remote from 1 and, therefore,
require fewer quasi-Newton updates to be represented.

Since H is self-adjoint, we must consider a preconditioned Hessian in a symmetric form, for example:

eH ¼ ðB�1Þ�HB�1; ð5:4Þ

with some operator B : Yp ! Yp. We can prove that the operator eH is the Hessian of the following modified auxiliary DA
problem: find dk and du such that

@du
@t

� F 0
uð�u; �kÞdu ¼ F 0

kð �u; �kÞB�1
dk; t 2 ð0; TÞ;

dujt¼0 ¼ 0;

S2ðdkÞ ¼ inf
v2Yp

S2ðvÞ;

8
>><
>>:

ð5:5Þ

where

S2ðdkÞ ¼
1
2
ðV1B

�1ðdk� n1Þ;B�1ðdk� n1ÞÞYp
þ 1
2
ðV2ðCdu� n2Þ;Cdu� n2ÞYobs

: ð5:6Þ

Therefore, one may use the BFGS algorithm to solve the minimization problem (5.5) and (5.6) and find ðeHÞ�1. After that, hav-
ing ðeHÞ�1, one can easily recover H�1 using the formula

H�1 ¼ B�1ðeHÞ�1ðB�1Þ�: ð5:7Þ

For the boundary flux estimation problem (Section 4.3) the modified auxiliary problem (5.5) and (5.6) reads as follows: find
du1; du2 and du such that

@du
@t

� F 0ð �uÞdu ¼ 0; t 2 ð0; TÞ
dujt¼0 ¼ 0;

�kð�uÞ @du
@x

jx¼0 ¼ B�1
1 du1; kð�uÞ @du

@x
jx¼1 ¼ B�1

2 du2;

S2ðdu1; du2Þ ¼ inf
v1 ;v2

S2ðv1;v2Þ;

8
>>>>><
>>>>>:

ð5:8Þ

where

S2ðdu1; du2Þ ¼
1
2

X2

i¼1

V ðiÞ
1 B�1

i ðdui � ni;1Þ;B�1
i ðdui � ni;1Þ

� �
L2ð0;TÞ

þ 1
2

V2ðCdu� n2Þ;Cdu� n2ð ÞYobs
: ð5:9Þ

One can recover H�1 by the formula (5.7), where B is 2� 2 block-diagonal matrix with B1 and B2 as blocks.
An important issue is how to construct the operator B�1. Usually one tries to take B�1 in such a way that the spectrum of

the preconditioned Hessian eH ¼ ðB�1Þ�HB�1 is clustered around 1. This means that the majority of eigenvalues of eH are equal
or close to 1. Theoretically, the best choice of B�1 is such that eH is the identity operator. Thus, one should achieve
B�1ðB�1Þ� � H�1 or B�B � H. One possibility to construct B�1 is to consider an approximation Ha � H. If we compute the Chole-
sky factorization for H�1

a in the form H�1
a ¼ LL�, then we can take B�1 ¼ L. Sometimes, it is beneficial to compute the Cholesky

factorization for Ha itself, i.e. Ha ¼ LL�, then we can take B�1 ¼ ðL�Þ�1.
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Fig. 2. Scaled correlation function of the background error rðz� z0Þ for different constant c. Left – the diffusion coefficient estimation problem
ðL ¼ 1; m ¼ mx ¼ 200Þ. Right – the boundary flux estimation problem ðT ¼ 0:064; m ¼ mt ¼ 64Þ.



In this paper we assume that Ha ¼ V1. This choice of Ha corresponds to the ‘first level’ preconditioning commonly used in
variational DA [3,5]. In the 1D case, the weight matrix V1 defined by (5.1) and (5.2) is a five-diagonal banded matrix. For a
given V1 we compute the Cholesky factorization V1 ¼ LL�, where L is the lower triangular factor of V1. Then, the product B�1

v

(required in Eqs. 5.5, 5.6 and 5.7) can be obtained by the backward substitution sweep involving L�, while ðB�1Þ�v (required
in (5.7)) – by the forward substitution sweep involving L. With this arrangement the matrix Vn1 is never computed. Other
possible approaches to Hessian preconditioning are considered in [5,24,26]. Let us emphasize that the development of an
efficient preconditioner would be the key implementation issue for the method proposed.

5.3. Additional implementation details

As a model for numerical implementation we consider the 1D convection–diffusion equation. We use the implicit time
discretization as follows

ui �ui�1

ht

þ @ðwuiÞ
@x

� @

@x
kðuiÞ @u

i

@x

� �
¼ 0; i 2 ð1; . . . ;mtÞ; x 2 ð0;1Þ; ð5:10Þ

where i ¼ 1; . . . ;mt is the time integration index, ht ¼ T=mt is a time step. The spatial operator is discretized on a uniform
mesh (hx ¼ 1=mx is the spatial discretization step, mx is the total number of mesh nodes) using the ‘power law’ first-order
scheme as described in [15].

When the boundary flux estimation problem is considered (Section 4.3), the model equation is nonlinear (k ¼ kðuÞ). In
this case for each time step we perform nonlinear iterations, assuming initially that kðuiÞ ¼ kðui�1Þ, and keep iterating until
(5.10) is satisfied (i.e. the norm of the left-hand side in (5.10) becomes smaller than a threshold �1 ¼ 10�12 ffiffiffiffiffiffi

mx

p
). For the

parameter estimation problem (Section 4.2) we assume that the diffusion coefficient does not depend on the solution u,
but is a function of x, i.e. k ¼ kðxÞ. Let us notice that even though the model equation becomes linear in this case, the param-
eter estimation problem remains nonlinear (that can be seen from (4.15)).

Let us note that the auxiliary DA problem (3.24) and (3.25) includes the TLM of the original evolution problem. In order to
solve the minimization problem (3.24) and (3.25) using the BFGS algorithm one also needs the adjoint model that computes
the gradient of (3.25) with respect to the unknown parameters. Both in [6] and in the present paper we use the TLM and
adjoint models generated by means of Automatic Differentiation (AD) [8]. The TLM and adjoint models produced in this
way are known as consistent models. We stress that the use of consistent models is essential to obtain the H-covariance.
However, if the TLM code is produced by means of AD, it could be difficult to separate manually the part of the code which
computes the solution of the original evolution problem and the part which computes the solution of the TLM. With this
arrangement the original nonlinear problem has to be solved as many times as the TLM whereas it should be solved only
once. Let us notice that for solving the auxiliary problem (3.24) and (3.25) the consistency between the TLM and the adjoint
models is all that is required. Therefore, the compromise approach would be: (a) derive analytically and separately imple-
ment the TLM, and (b) generate the adjoint model by means of AD, using the TLM source code as the input for the AD engine.

In numerical experiments, the H-covariance matrix V will be compared with the ensemble covariance matrix bV , obtained
by the fully nonlinear ensemble method. This method is presented in detail in [6]. Here we would only mention that this
method allows the covariance matrix to be estimated without any linearization involved, and therefore is considered for
the verification purpose. The ensemble sizeM ¼ 400 is being used in all ensemble computations presented in this paper. This
size has been chosen such that the sampling error is noticeably smaller (�10%) than the optimal solution error.

6. Numerical results

Wementioned already that DA allows the uncertainty in model parameters/controls to be reduced. The background error
covariance matrix Vn1 (a priori covariance matrix) is a measure of uncertainty in model parameters before DA. The variance
r2

b can be considered as the original uncertainty magnitude. The (optimal solution error) covariance matrix Vdk (a posteriori
covariance matrix) is a measure of uncertainty in the sought parameters after DA and the variance r2

dk is the uncertainty
magnitude after DA, respectively. Let us introduce the function

fðzÞ ¼ r2ðzÞ=r2
bðzÞ; z 2 ½0;1�; ð6:1Þ

where r2ðzÞ is the H-variance. The function f quantifies the ’usefulness’ of observation data in terms of reducing the original
uncertainty magnitude. Let us note that 0 < f < 1: f ! 1 means that the efficiency of DA decreases (i.e. the original uncer-
tainty is less and less affected), f ! 0 means that DA is increasingly efficient. Below, the results of most numerical exper-
iments are presented in terms of f. In addition to f obtained by the BFGS, we present f̂ which is obtained by the ensemble
method. These two must be in a proper agreement if the linearization error is small enough and the ensemble size M is suf-
ficiently large.



6.1. Distributed coefficient estimation

Here we refer to the diffusion parameter estimation problem stated in Section 4.2. In this problem one tries to estimate
the unknown diffusion coefficient kðxÞ; x 2 ð0;1Þ using a set of incomplete observations of the fielduðt; xÞwhich evolves from
the known initial state u. Let us note that the evolution Eq. (4.11) is now linear, however the parameter estimation problem
is always nonlinear. We consider two cases: the convection-dominated case ðw ¼ 10; k ¼ 0:01; Pe ¼ w=k ¼ 103), and the
pure diffusion case ðw ¼ 0; k ¼ 0:1Þ. In the first case the initial state is the step-function

u ¼ 1; x 6 0:1

0; x > 0:1

�
;

in the second case it is defined by the formula

u ¼ 0:5ð1þ cosð4pxÞÞ: ð6:2Þ

The ‘true’ field �uðt; xÞ for both cases is presented in Fig. 3(left) and Fig. 3(right), respectively. In geophysics, the convection-
dominated problems are usual in meteorology and surface-water applications. For example, Fig. 3(left) may represent a heat
wave propagation. Even though the (eddy) diffusion could be relatively small, it is an important parameter that defines the
front dissipation rate. The diffusion-dominated problems arise in groundwater [20] and oil-reservoir modelling.

In order to compute the H-covariance Vwe solve the modified auxiliary DA problem (5.5) and (5.6) with k ¼ k by the BFGS
algorithm, then retrieve V ¼ H�1 using (5.7). The discretization parameters for the numerical model are: mx ¼ 200,
hx ¼ 0:05; mt ¼ 128; T ¼ 0:064; ht ¼ 0:005.

6.1.1. Convection-dominated evolution model

In this part we consider the observation scheme which consists of five sensors located in the middle of the computational
domain at the points x ¼ 0:4;0:45;0:5;0:55;0:6; the observation error variance is constant in x with robs ¼ 3� 10�4. Since
the diffusion coefficient is always positive, the function aðxÞ (which largely defines rbðxÞ) must be considered such that
3rbðxÞ < �kðxÞ; 8x. We chose aðxÞ to satisfy the condition 3rbðxÞ � �kðxÞ. This allows us to apply the largest possible back-
ground error n1, while keeping kb ¼ �kþ n1 positive (and therefore physically meaningful) in ensemble computations. This
is a limitation of the theory presented in this paper that results from the assumption of the Gaussian (i.e. symmetric) dis-
tribution of the background error and could be particularly noticeable for small �kðxÞ.

In the first example we consider �kðxÞ ¼ 0:01; w ¼ 10; cðxÞ ¼ 10, and aðxÞ ¼ 4� 104. The result obtained by the BFGS (the
function fðxÞ, (6.1)) is presented in Fig. 4(left) in bold solid line. One can see that the behaviour of f is relatively simple and
generally resembles the behaviour of the variance in the initial-value control problem ([6]). The minima of f are located in
the vicinity of sensors. Between the sensors f grows to a level which depends mainly on the background error correlation
radius controlled by cðxÞ. Outside the domain covered by sensors f grows approaching 1, even though there is an interme-
diate level of f < 1 in the upstream direction. For the same conditions we compute the ensemble f̂ (presented in the marked
line). One can notice that f̂ is in a good agreement with f obtained by the BFGS, particularly within the area where sensors
dominate the look of f. The H-covariance matrix V obtained by the BFGS and V̂ obtained by the ensemble method are pre-
sented in Fig. 5(left) and Fig. 5(right), respectively.

In order to compare cases with different kðxÞ we consider the following functions: kðxÞ ¼ 0:1; w ¼ 10; cðxÞ ¼ 10, and
aðxÞ ¼ 4� 102. The result obtained by the BFGS is presented in Fig. 4(left) in faint solid line. We note that now the structure
of f is even simpler than before and that the larger kðxÞ can be better estimated (with the same robs).

In the second example presented in Fig. 4(right) we compare f computed with cðxÞ ¼ 10 (in bold solid line) and with the
variable c defined by (5.3)(in faint solid line). One can notice a very significant difference between these cases. This example
underlines the crucial role of the background error correlation radius (controlled by c) in computing the covariance.

Fig. 3. -Field evolution for convection-dominated problem (left) and pure diffusion problem (right).



6.1.2. Pure diffusion evolution model

In this part we refer to Fig. 6(left). We consider two observation schemes. Each scheme consists of six sensors located in
the middle of the spatial domain, however the sensors are located differently. In both cases the observation error variance is
constant in x with robs ¼ 5� 10�3. In the first case the sensors are evenly distributed (locations are shown by arrows marked
a), the corresponding fðxÞ is presented in faint solid line. In the second case the sensors are put in pairs (locations are shown
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Fig. 5. Diffusion coefficient estimation problem. Left – H-covariance. Right – ensemble covariance.
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by arrows marked b), the result is presented in bold solid line. We notice that in the second case the function fðx ¼ 0:375Þ is
smaller by an order of magnitude than in the first case. For the second case we also present the ensemble f̂ by the marked
line. One can see a very good agreement between f and f̂, particularly in the area covered by sensors. For this case the H-
covariance V and the ensemble covariance bV are presented in Fig. 7(left) and Fig. 7(right), respectively.

In the case of pure diffusion the behaviour of f is more complex than in the convection-dominated case. This can be ex-
plained by considering the expression (4.14), for example. We notice that the function @u�=@x, which is responsible for deliv-
ering information from the sensors via the adjoint variable, is multiplied by @u=@x. Because of that, in the areas with small
field gradients the gradient of the cost function S0ðkÞ is dominated by the background term. Due to the symmetric nature of
the diffusion process, the extremum points in the initial state do not change their original location (see e.g. Fig. 3(right)), i.e.
the areas with small and big gradients remain at certain locations.

Below we refer to Fig. 6(right). Let us assume that the observation system includes a single sensor and the initial condi-
tion satisfies to (6.2). First we put the sensor at the location x ¼ 0:5, where the field gradient tends to zero, but the field value
uðt; xÞ changes most significantly. Next we put the sensor at the location x ¼ 0:375, where the field gradient reaches its max-
imal value, however the field value remains constant uðt; xÞ ¼ 0:5. The results (function fðxÞ) are presented in bold solid and
bold dashed lines, respectively. In the first case (x ¼ 0:5), as expected, no significant reduction in f is achieved. In the second
case ðx ¼ 0:375Þ the result is actually even worse (around the sensor location). The point is that the constant field value mea-
sured by the sensor may correspond to any initial condition that satisfies u ¼ 0:5ð1þ cosð2npxÞÞ; n ¼ 2;3; . . ., which means
that without the background term the problem has no unique solution. This analysis leads to the conclusion that in given
circumstances it might be beneficial to observe the field gradient, rather than the field value. In order to support this idea,
instead of a single sensor at x ¼ 0:375, we put a pair of sensors located closely (x1 ¼ 0:365 and x2 ¼ 0:385). The correspond-
ing f is presented in Fig. 6(right) by a thin dashed line. One can see that we have achieved a drastic decrease in f. Finally, we
put a pair of sensors (x1 ¼ 0:49 and x2 ¼ 0:51) instead of a single sensor at x ¼ 0:5. One can see that the same decrease in f is
not achieved. This must be expected since the field gradient at x ¼ 0:5 is equal to zero. A practical conclusion from these
numerical experiments is that at the areas where the field gradient is big enough one may use a pair of closely located sen-
sors to catch the field gradient. In this case the quality of the diffusion coefficient estimation can be greatly improved. A sim-
ple structure of f in the convection-dominated problem considered above can now be explained. The reason is that the
convection moves the field pattern (front) across the domain, therefore a similar field and field gradient values are supplied
to each sensor at some stage.

6.2. Boundary flux estimation problem

Here we refer to the parameter estimation problem stated in Section 4.3. For a trivial initial condition u ¼ 0, one looks to
estimate unknown boundary fluxes u1 and u2 using a set of incomplete observations uobs. The observation scheme includes
three sensors located at points x ¼ 0:2; 0:5;0:8. The evolution Eq. (4.16) is nonlinear because the diffusion coefficient kðuÞ
depends on u. In order to set up tests we consider two cases of kðuÞ as shown in Fig. 8(left).

The diffusion coefficient kðuÞ varies from the level k1 to the level k2 (k2 > k1 for case I and k2 < k1 for case II) within the
interval ½u0 � D; u0 þ D� subjected to the rule as follows:

kðuÞ ¼ k1 þ k2
2

� k1 � k2
2

sin pðu�u0Þ=ð2DÞð Þ: ð6:3Þ

Fig. 7. Diffusion coefficient estimation problem. Left – H-covariance. Right – ensemble covariance.



We can control the degree of nonlinearity (up to a nearly discontinuous kðuÞ) by changing parameters D and k1; k2. In case I

we choose u0 ¼ 0:3; k1 ¼ 0:05; k2 ¼ 1:0; D ¼ 0:15, in case II-u0 ¼ 0:0; k1 ¼ 1:0; k2 ¼ 0:05; D ¼ 0:1. The discretization
parameters for the numerical model are: mx ¼ 200, hx ¼ 0:05; mt ¼ 64; T ¼ 0:64; ht ¼ 0:01. The ‘true value’ of the driving
boundary condition �u1 for two cases under consideration are presented in Fig. 8(right), while �u2 ¼ 0.

6.2.1. Inflow driving boundary

A distinguishing feature of this case is that the driving boundary at x ¼ 0 is the inflow boundary (i.e. w > 0ðjwj ¼ 2Þ),
therefore the boundary perturbations propagate far enough into the domain. The field variable �uðx; tÞ for this case is pre-
sented in Fig. 9(left), the diffusion coefficient kð�uðx; tÞÞ in Fig. 9(right). We compute the H-covariance and the ensemble
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covariance assuming the following properties of errors ni : a ¼ 1:0; c ¼ 10:0, robs ¼ 0:03. The corresponding variances are
presented in Fig. 10(left).

The first thing to be noticed in this figure is that the variance of the unknown flux u1 at the inflow boundary x ¼ 0 (solid
line) is much smaller than the background variance (dashed line), which means it can be well identified almost everywhere,
excluding a ‘blind spot’ interval ðT � dt; TÞ. The match between the H-variance and the ensemble variance is good. This result
is trivial and could easily be predicted from a qualitative analysis.

An unexpected conclusion is however that the flux u2 at the outflow boundary x ¼ 1 can also be partially identified
ðt 2 ð0:38;0:6ÞÞ. This ‘identifiable’ part of the boundary condition u2 corresponds to a larger value of the diffusion coefficient
kðuÞ (Fig. 9(right)), which is due to the nonlinearity. This behaviour would be difficult to expect without computations.

Let us notice that the match between the H-variance and the ensemble variance for u2 is not particularly good. Indeed, the
H-covariance is an approximation of the actual covariance which relies on the linearized error evolution model (TLM). In
([6]) we emphasize that the tangent linear hypothesis is a local sufficient condition. Because of that, the H-covariance could
be a good approximation of the covariance far beyond the validity of this condition. The accuracy of the linearization de-
pends on two factors: a) degree of the nonlinearity; b) magnitude of errors ni. This means that the estimation/control prob-
lem could be extremely nonlinear, yet the linearization would be accurate if the magnitude of errors is sufficiently small. In
the case considered above the magnitude of the background error was noticeably larger than the unknown fluxes
themselves.

To illustrate this point we consider another case with the errors magnitude being 1/4 of those in the previous case:
a ¼ 4:0; c ¼ 10:0; robs ¼ 0:0075. The variances for this case are presented in Fig. 10(right). We can see that the H- and
the ensemble variances are now in a much better agreement, particularly in the area highlighted by the ellipse. Therefore,
for smaller errors, the H-covariance is again a good approximation of the covariance.

Next we analyse how the H-covariance V depends on the correlation radius of the background error rðt � t0Þ, which is con-
trolled by c (Fig. 2(right)). The function f ¼ fðtÞ for different c is presented in Fig. 11 for u1 (left) and for u2 (right). In [6] we
mentioned that c is a crucial parameter which defines the H-covariance. The same conclusions can be drawn from Fig. 11. We
can see that for a weakly correlated background error c ¼ 0:1, the function f is close to 1 even for the inflow boundary x ¼ 0,
Fig. 11(left). As c grows, f becomes smaller, i.e. the efficiency of DA increases. This example shows that if we specify the back-
ground error correlation radius wrongly (which may happen since c is often a priori defined function!), then the covariance
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estimate (both H-covariance and the ensemble covariance) could be wrong. One could possibly state that any discussion on
the ‘linearization error issue’ is irrelevant unless we are certain about the background error correlation function.
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6.2.2. Outflow driving boundary

A distinguishing feature of this case is that the driving boundary at x ¼ 0 is the outflow boundary (i.e. w < 0ðjwj ¼ 2Þ),
therefore perturbations at the boundary do not propagate far into the domain. The field variable �uðx; tÞ for this case is pre-
sented in Fig. 12(left), the diffusion coefficient kð�uðx; tÞÞ – in Fig. 12(right).

We compute the H-covariance and the ensemble covariance assuming the following properties of errors
ni : a ¼ 1:0; c ¼ 10:0; robs ¼ 0:03. The variances are presented in Fig. 13. Once again, one can notice that the flux at inflow
boundary x ¼ 1 can be well identified, which is a result one should expect. An unexpected result is that the flux u1 at outflow
boundary x ¼ 0 can also be partly identified (because of the nonlinearity). Moreover, we know exactly which parts of the
boundary (when) and how well this can be done. Therefore, in order to analyse numerically the degree of uncertainty reduc-
tion in a model parameter (control), the H-covariance has to be computed. The similar theoretical analysis is often a difficult
task, for the nonlinear case in particular.

The H-covariance and the corresponding ensemble covariance matrices are presented in Fig. 14, upper panel (for the out-
flow boundary, x ¼ 0) and lower panel (for the inflow boundary, x ¼ 1). A satisfactory agreement between the H-covariance
and the ensemble covariance in both cases can be noticed (as well as for the variances presented in Fig. 13).

6.3. Benefits of preconditioning

The preconditioning technique is described in Section 5.2. As a preconditioner we use the Cholesky factor of the weight
matrix V1, which is inverse to the background error covariance matrix Vn1 . In [6] we reported that as the correlation radius of
the background error (controlled by c) grows, the number of iterations required to form the inverse Hessian quickly in-
creases approaching the number of unknowns. This is true for the problems considered in this paper if the original auxiliary
problem (3.24) and (3.25) or (4.20) and (4.21) is considered. However, if we solve the modified auxiliary DA problem for the
preconditioned Hessian (5.5) and (5.6) or (5.8) and (5.9), the quasi-Newton approximation of the inverse Hessian requires
much fewer BFGS updates to be formed. Examples of the convergence history with and without preconditioning (for other-
wise equivalent conditions) are presented in Fig. 15 for the diffusion coefficient estimation problem (left), and for the bound-
ary flux estimation problem (right). These two cases correspond to the problems considered earlier and presented in
Fig. 4(left) and in Fig. 10(right), respectively.

The criteria used to stop the BFGS iterations takes into account the slope of the convergence curve

log
Sn�1
i

Sni

 !
> �; i ¼ 1;2; ð6:4Þ

where n is the BFGS iteration number, Sni is the corresponding value of the cost functional Si. The value of the threshold � used
in all examples was � ¼ 4. In the vast majority of numerical tests this criterion leads to accurate results.

A major advantage of using the inverse BFGS update formula is that one can compute the H-covariance using the product
Hv, that is without the need to form and keep the matrix H. However, if the number of the BFGS iterations is large, this
advantage would be quickly annihilated because of the need to keep a large number of updates (pair-vectors), and to run
both the TLM and adjoint models at each iteration. The examples of the convergence history presented in Fig. 15 show that
with an efficient preconditioning the H-covariance matrix can be computed in a number of iterations much less than the
number of unknowns m, therefore much less memory is required to keep the updates. Let us recall that the direct method
for computing the covariance via the Hessian matrix H (sometimes referred to as the Fisher information matrix) would re-
quire all m runs of the TLM plus the inversion of the matrix H.
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7. Conclusions

In [6] we investigated the initial-value optimal control problem for a nonlinear evolution model, which is a typical DA
problem arising in geophysics. In this paper we consider various parameter estimation problems such as a distributed coef-
ficient estimation problem and a boundary value estimation problem. These two are different types of problem that may
arise in the same application field. The first one is often considered to calibrate models which describe the transport of traces
or turbulent dissipation processes in ocean and atmosphere, the second one – to calibrate regional scale (coastal, for exam-
ple) flow models. The optimal solution error a posteriori covariance matrix (approximated by the H-covariance) can be used
for a subsequent DA, as an optimal solution quality estimate, for the analysis of uncertainty in model outputs (either forecast
or hind-cast) and for optimal design of observation schemes, including the adaptive real-time mode. Besides, it can be used
to quantify the identifiability levels for any estimation problem, and therefore, it is an important (numerical) analysis tool
which may complement existing analytical methods. We found that the H-covariance and the uncertainty reduction quo-
tient f in particular are convenient graphic measures better suited for visual analysis and interpretation than the spectrum
of the Hessian, for example. Let us notice that even though the idea of using the a posteriori covariance for numerical analysis
of identifiability of large-scale complex nonlinear dynamical systems looks apparent, we are not aware of studies exploiting
this idea in practice.

The main theoretical result presented in [6] is that in the nonlinear case the analysis (initial-value) error covariance oper-
ator can be approximated by the inverse Hessian of the auxiliary DA problem based on the TLM constraints. This result was
first formulated in an operator form in [6]. In the present paper we prove the same result for parameter estimation problems.
It can be stated that for any DA problem, whatever the data, controls and constraints are, the same results should be valid (if
the TLM of the constraints exists and the Hessian of the auxiliary problem is invertible).

In [6] we presented details of a numerical algorithm to compute an estimate of the covariance as the inverse Hessian with
the use of the quasi-Newton BFGS minimization method. We refer to this estimate as the ‘H-covariance’. In this paper we
formulate a modified auxiliary DA problem for a preconditioned Hessian, solve this problem using the BFGS method and re-
cover the inverse Hessian of the original auxiliary DA problem, i.e. the H-covariance matrix. Let us note that one may need to
recover only target elements of this matrix. As a preconditioner we use the Cholesky factor of the background error weight
matrix V1. Numerical experiments show that the preconditioning allows the number of iterations required to build an accu-
rate quasi-Newton approximation of the inverse Hessian to be reduced by an order of magnitude (as compared to the num-
ber of unknowns). With the use of efficient preconditioning, the suggested method becomes significantly more attractive
from the computational point of view than any existing direct method (i.e. a method which would require the full matrix
H to be computed and stored).

We suggest an approach for specifying directly the background error weight matrix V1 (inverse of the background error
covariance matrix). This method is based on the assumption that the background error belongs to the Sobolev space. It is
found that with the use of the weight functions aðzÞ and cðzÞ in (5.1) one can generate a family of the covariance matrices,
such that aðzÞ controls mainly the variance and cðzÞ controls mainly the correlation radius. Therefore, given a background
error covariance matrix Vn1 (generally dense), one can generate a corresponding sparse weight matrix V1 such that
V�1

1 � Vn1 . This is important since we may need the (incomplete) Cholesky factors of V1 for the preconditioning.
We conducted a series of numerical tests to validate the performance of the BFGS algorithm by comparing the H-covari-

ance against the ensemble covariance. Generally, we observed that those two are in a good agreement. This confirms that the
linearization error, even though locally significant, does not result in equally significant deviations in the H-covariance. In
one example we do observe a noticeable difference that vanishes as the magnitude of the input errors is reduced. As before
([6]), the influence of the background error correlation radius on the H-covariance is found to be crucial.

The H-covariance can be used to investigate numerically the degree of uncertainty reduction and to design efficient obser-
vation schemes including adaptive observations. The numerical tests performed have revealed some interesting features of
the estimation problems under consideration. For example, one practical conclusion is that in order to identify the diffusion
coefficient at a certain location, one needs a pair of closely located field sensors. Another surprising result is a partial iden-
tifiability of the outflow boundary in the nonlinear convection–diffusion model, which is a consequence of the nonlinearity.
One should expect that for more complex models more interesting properties are likely to be discovered.
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