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Abstract. The problem of variational data assimilation for a nonlinear evolution model is for-
mulated as an optimal control problem to find the initial condition function (analysis). The equation
for the analysis error is derived through the errors of the input data (background and observation
errors). This equation is used to show that in a nonlinear case the analysis error covariance operator
can be approximated by the inverse Hessian of an auxiliary data assimilation problem which in-
volves the tangent linear model constraints. The inverse Hessian is constructed by the quasi-Newton
BFGS algorithm when solving the auxiliary data assimilation problem. A fully nonlinear ensemble
procedure is developed to verify the accuracy of the proposed algorithm. Numerical examples are
presented.
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1. Introduction. The methods of variational data assimilation (DA) were de-
signed to combine models and observational data as sources of information. From
the mathematical point of view, DA problems can be formulated as optimal control
problems (e.g. [16, 4]). A major advantage of this approach is the derivation of an
optimality system which contains all the available information. In practice the opti-
mality system includes background and observation errors, hence the error in optimal
solution (analysis error). It is an important practical issue to estimate properties of
this error. In this paper we consider a nonlinear evolution model with an unknown
initial condition, which must be retrieved using incomplete observations of state evo-
lution. The analysis can be used as a basis to define the background for the next DA
cycle or it might be of interest by its own (hind-cast).

The analysis error may be derived through the errors of the input data using the
Hessian of the associated DA problem. For a deterministic case this was achieved in
[17]. If the errors of the input data are random and normally distributed, then for
a linear evolution model, the analysis error covariance matrix is given by the inverse
Hessian of the cost functional (see e.g. [29]). For a nonlinear problem no exact
relationship exists. In practice it is usually assumed that the evolution of errors can
be satisfactorily described by the tangent linear model (TLM). This assumption is
called the tangent linear hypothesis (TLH). In this case the analysis error covariance
matrix is considered to be approximately equal to the inverse Hessian of the cost
functional (see e.g. [29, 14, 23, 30, 28, 11, 32]). These results are given for a discretized
problem, while in this paper we prove similar results for the continuous case. Also,
our consideration of the nonlinear case is different since we do not rely on the TLH
from the very beginning.

Here we develop the ideas of [17] for the case of stochastic errors. We derive the
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exact equation for the analysis error through the errors of the input data without the
use of the TLH. This equation involves some operators which are then approximated
to derive an estimate of the analysis error covariance operator. It is shown that in
a nonlinear case the analysis error covariance operator can be approximated by the
inverse Hessian of the auxiliary (linearized) data assimilation problem, which involves
the tangent linear model constraints, and it does not coincide in general with the
Hessian of the original nonlinear DA problem. This result has not been formulated
in an operator form before.

We develop a numerical algorithm to compute the analysis error covariance ma-
trix with the use of the quasi-Newton BFGS method [26, 7]. The following points are
essential for this algorithm: choice of input functions, choice of initial guess in the
auxiliary DA problem and the exact analytical step search for the minimization along
the direction of descent. We also develop a novel, fully nonlinear ensemble method,
which is the only way to estimate the actual value of the analysis error covariance
matrix in the nonlinear case. We compare the estimates of this matrix obtained by
the BFGS and by the ensemble method. This comparison is illustrated by numer-
ical examples given for the 1D nonlinear convection-diffusion model. The tests are
specially designed to produce strong nonlinear effects. Other examples show how the
analysis error variance depends on the different transport phenomena supported by
the model and on the correlation radius of the background error.

In this paper we consider the background error and the observation error, but
there are other potential errors, such as ’representation’ or ’model’ error and an error
due to discretization of the model equations. Errors of these types may also be taken
into account by the technique based on the inverse Hessian. For a deterministic case
the ’model’ error was considered in [17].

The paper is organized as follows. In Sect.2, we provide the statement of the vari-
ational DA problem for a nonlinear evolution model to identify the initial condition.
In Sect.3, the equation of the analysis error is derived through the errors of the input
data using the Hessian of the auxiliary DA problem. In Sect.4, we derive the formulas
for the covariance operator through the covariance operators of the input errors involv-
ing this Hessian. The numerical algorithm to compute the analysis error covariance
matrix as the inverse Hessian and a fully nonlinear ensemble method are described in
Sect.5. Section 6 presents the model employed (the 1D nonlinear convection-diffusion
equation) and other details of numerical implementation. Numerical examples are
presented in Sect.7. A particular Sub-section in Sect.7 investigates the validity of the
TLH condition. The Appendix contains the definition of the Hessian of the original
nonlinear data assimilation problem using the second-order adjoint technique.

From this point on we shall refer to ’analysis error covariance/variance’ simply as
’covariance/variance’.

Part of the theory presented in this paper has been published in [18].

2. Statement of the problem. Consider the mathematical model of a physical
process that is described by the evolution problem

{

∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

(2.1)

where ϕ = ϕ(t) is the unknown function belonging for any t to a Hilbert space
X , u ∈ X , F is a nonlinear operator mapping X into X . Let Y = L2(0, T ;X),

‖ · ‖Y = (·, ·)1/2
Y , f ∈ Y . Suppose that for a given u ∈ X, f ∈ Y there exists a unique

solution ϕ ∈ Y to (2.1).
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Let us formulate the following DA problem (optimal control problem) with the
aim to identify the initial condition: find u ∈ X and ϕ ∈ Y such that they satisfy
(2.1), and on the set of solutions to (2.1), a cost functional S(u) takes the minimum
value, i.e.















∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

S(u) = inf
v ∈ X

S(v),
(2.2)

where

S(u) =
1

2
(V1(u − u0), u− u0)X +

1

2
(V2(Cϕ− ϕobs), Cϕ− ϕobs)Yobs

.(2.3)

In this formulation u0 ∈ X is a prior initial-value function (background state), ϕobs ∈
Yobs is a prescribed function (observational data), Yobs is a Hilbert space (observation
space), C : Y → Yobs is a linear bounded operator, V1 : X → X and V2 : Yobs → Yobs

are symmetric positive definite operators.
The necessary optimality condition reduces the problem (2.2)-(2.3) to the follow-

ing system [19], [1]:

{

∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

(2.4)

{

−∂ϕ
∗

∂t
− (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ− ϕobs), t ∈ (0, T )

ϕ∗

∣

∣

t=T
= 0,

(2.5)

V1(u− u0) − ϕ∗
∣

∣

t=0
= 0(2.6)

with the unknowns ϕ, ϕ∗, u, where (F ′(ϕ))∗ is the adjoint to the Frechet derivative of
F , and C∗ is the adjoint to C defined by (Cϕ,ψ)Yobs

= (ϕ,C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs.
We assume that the system (2.4)–(2.6) has a unique solution. We shall denote by H
the Hessian of the nonlinear DA problem (2.2)–(2.3). The definition of H is provided
in the Appendix.

Suppose that u0 = ū+ ξ1, ϕobs = Cϕ̄+ ξ2, where ξ1 ∈ X, ξ2 ∈ Yobs, and ϕ̄ is the
(”true”) solution to the problem (2.1) with u = ū:

{

∂ϕ̄
∂t

= F (ϕ̄) + f, t ∈ (0, T )

ϕ̄
∣

∣

t=0
= ū.

(2.7)

The functions ξ1, ξ2 may be treated as the errors of the input data u0, ϕobs (back-
ground and observation errors, respectively). For V1 and V2 in (2.3), we consider
V1 = V −1

ξ1
, V2 = V −1

ξ2
, where Vξi

is the covariance operator of the corresponding error
ξi, i = 1, 2.

Having assumed that the solution of the problem (2.4)–(2.6) exists, we will study
the impact of the errors ξ1, ξ2 on the optimal solution u and develop the theory
presented in [17] for the case of stochastic errors.
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3. Equation for the analysis error via Hessian. The system (2.4)–(2.6)
with the three unknowns ϕ, ϕ∗, u may be treated as an operator equation of the form

F(U,Ud) = 0,(3.1)

where U = (ϕ, ϕ∗, u), Ud = (u0, ϕobs, f).
The following equality holds for the exact solution (’true state’):

F(Ū , Ūd) = 0,(3.2)

with Ū = (ϕ̄, ϕ̄∗, u), Ūd = (ū, Cϕ̄, f), ϕ̄∗ = 0. The system (3.2) is the necessary
optimality condition of the following optimal control problem: find u and ϕ such that











∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

S̄(u) = inf
v
S̄(v),

where

S̄(u) =
1

2
(V1(u− ū), u− ū)X +

1

2
(V2(Cϕ − Cϕ̄), Cϕ − Cϕ̄)Yobs

.

From (3.1)–(3.2), we get

F(U,Ud) −F(Ū , Ūd) = 0.(3.3)

Let δU = U − Ū , δUd = Ud − Ūd. Then (3.3) gives

F(Ū + δU, Ūd + δUd) −F(Ū , Ūd) = 0.(3.4)

Let δϕ = ϕ− ϕ̄, δu = u− ū; then δU = (δϕ, ϕ∗, δu), δUd = (ξ1, ξ2, 0). Let us suppose
that F is continuously Frechet differentiable, then there exists ϕ̃ = ϕ̄+ τ(ϕ− ϕ̄), τ ∈
[0, 1], such that the Taylor-Lagrange formula [21] is valid: F (ϕ) − F (ϕ̄) = F ′(ϕ̃)δϕ.
Then equation (3.4) is equivalent to the system:

{

∂δϕ
∂t

− F ′(ϕ̃)δϕ = 0, t ∈ (0, T ),

δϕ|t=0 = δu,
(3.5)

{

−∂ϕ
∗

∂t
− (F ′(ϕ))∗ϕ∗ = −C∗V2(Cδϕ− ξ2),

ϕ∗

∣

∣

t=T
= 0,

(3.6)

V1(δu− ξ1) − ϕ∗|t=0 = 0.(3.7)

Let us introduce the operator H̃ defined by the successive solutions of the following
problems:

{

∂ψ
∂t

− F ′(ϕ̃)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(3.8)
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{

−∂ψ
∗

∂t
− (F ′(ϕ))∗ψ∗ = −C∗V2Cψ, t ∈ (0, T )

ψ∗

∣

∣

t=T
= 0,

(3.9)

H̃v = V1v − ψ∗|t=0.(3.10)

Below we introduce two auxiliary operatorsR1, R̃2. LetR1 = V1. Let us introduce
the operator R̃2 : Yobs → X acting on the functions g ∈ Yobs according to the formula

R̃2g = θ∗|t=0,(3.11)

where θ∗ is the solution to the adjoint problem

{

−∂θ
∗

∂t − (F ′(ϕ))∗θ∗ = C∗V2g, t ∈ (0, T )

θ∗
∣

∣

t=T
= 0.

(3.12)

From (3.8)–(3.12) we conclude that the system (3.5)–(3.7) is equivalent to the
single equation for δu:

H̃δu = R1ξ1 + R̃2ξ2.(3.13)

Under the hypothesis that H̃ is invertible, we get

δu = T̃1ξ1 + T̃2ξ2,(3.14)

where T̃1=H̃
−1R1, T̃2=H̃

−1R̃2, T̃1 : X→X , T̃2 : Yobs→X . We shall call T̃1, T̃2 the
error transfer operators.

Let us note that the functions ϕ, ϕ̃ in (3.5)–(3.7) depend on ξ1, ξ2, so as a result,
the error transfer operators T̃1, T̃2 also depend on ξ1, ξ2 (nonlinearly), and it is not
possible to represent δu through ξ1, ξ2 in an explicit form. To derive from (3.14)
the covariance operator of δu, we need to introduce some approximations T1, T2 of
the operators T̃1, T̃2, which do not depend on ξ1, ξ2. Consider the functions ϕ, ϕ̃ in
(3.5)-(3.7). Since ϕ̃ = ϕ̄+ τδϕ, ϕ = ϕ̄+ δϕ, we assume that

F ′(ϕ̃) ≈ F ′(ϕ̄), (F ′(ϕ))∗ ≈ (F ′(ϕ̄))∗,(3.15)

then (3.5)–(3.7) reduces to

{

∂δϕ
∂t − F ′(ϕ̄)δϕ = 0, t ∈ (0, T ),

δϕ|t=0 = δu,
(3.16)

{

−∂ϕ
∗

∂t − (F ′(ϕ̄))∗ϕ∗ = −C∗V2(Cδϕ− ξ2),

ϕ∗

∣

∣

t=T
= 0,

(3.17)

V1(δu− ξ1) − ϕ∗|t=0 = 0.(3.18)

The assumption (3.15) is the first-order approximation of the Taylor-Lagrange
formula for F ′ under the hypothesis that F is twice continuously Frechet differentiable



6 I. GEJADZE, F.-X. Le DIMET AND V. SHUTYAEV

[21]. The problem (3.16)–(3.18) is a linear problem; with fixed ϕ̄ it is the necessary
optimality condition to the following optimal control problem: find u and ϕ such that











∂δϕ
∂t

− F ′(ϕ̄)δϕ = 0, t ∈ (0, T )

δϕ
∣

∣

t=0
= δu

S1(δu) = inf
v
S1(v),

(3.19)

where

S1(δu) =
1

2
(V1(δu− ξ1), δu− ξ1)X +

1

2
(V2(Cδϕ− ξ2), Cδϕ− ξ2)Yobs

.(3.20)

We shall refer to the problem (3.19)-(3.20) as ’auxiliary DA problem’.
With the choice (3.15), the operator H̃ is the Hessian H of the problem (3.19)-

(3.20). This Hessian is defined by the successive solutions of the following problems:

{

∂ψ
∂t

− F ′(ϕ̄)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(3.21)

{

−∂ψ
∗

∂t
− (F ′(ϕ̄))∗ψ∗ = −C∗V2Cψ, t ∈ (0, T )

ψ∗
∣

∣

t=T
= 0,

(3.22)

Hv = V1v − ψ∗|t=0.(3.23)

Note that for ξ2 = 0 the operatorH coincides with the Hessian of the original nonlinear
DA problem H on the exact solution u = ū.

The Hessian H acts in X as a self-adjoint operator with domain of definition
D(H)=X . Moreover, due to V1, V2, the operator H is positive definite, and hence
invertible. Then, T1=H

−1R1, T2=H
−1R2, where R2 is R̃2 with ϕ replaced by ϕ̄ in

(3.12).
Note that if the tangent linear hypothesis is valid (e.g. [11]), then for small δϕ

we can choose (3.15), and so we can use T1, T2 instead of T̃1, T̃2. However, the TLH is
not the necessary condition, i.e. the transition from T̃1, T̃2 to T1, T2 may not require
the TLH to be valid.

As follows from (3.14), the impact of the errors ξ1, ξ2 on the value of the analysis
error δu is determined by the error transfer operators. The norm of these operators
may be considered as a sensitivity coefficient: the smaller the norm, the smaller
the impact of ξi on δu. This approach was used for deterministic error analysis in
[9, 15, 17]. Here, assuming the stochastic nature of the errors ξ1, ξ2, we will derive
the covariance operator through the covariance operators of the input errors.

4. Covariance operators. Below we suppose that the data errors ξ1, ξ2 are
normally distributed, unbiased and mutually uncorrelated. By Vξi

we denote the co-
variance operator of the corresponding data error ξi, i = 1, 2, i.e. Vξ1

· = E[(·, ξ1)Xξ1],
Vξ2

· = E[(·, ξ2)Yobs
ξ2], where E is the expectation. By Vδu we denote the covariance

operator of the analysis error: Vδu· = E[(·, δu)Xδu].
The covariance matrix estimated by the inverse Hessian in variational data as-

similation has been considered by many authors (e.g. [29, 30, 28, 11, 32, 14]) for a
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linearized evolution model (using the TLH). We will use the equation (3.14) to derive
the formulas for estimating the covariance operator Vδu involving the Hessian of the
auxiliary DA problem (3.19)–(3.20).

Consider the error equation (3.14) with T̃1, T̃2 replaced by T1, T2:

δu = T1ξ1 + T2ξ2,(4.1)

where Ti=H
−1Ri, T1 : X→X, T2 : Yobs→X . Let us denote by V the covariance

operator V · = E[(·, δu)Xδu] where δu satisfies the approximate error equation (4.1).
From (4.1) we get

V = T1Vξ1
T ∗

1 + T2Vξ2
T ∗

2 .(4.2)

To find the covariance operator V , we need to construct the operators TiVξi
T ∗

i , i =
1, 2.

Consider the operator T1Vξ1
T ∗

1 . Since T1 = H−1R1 = H−1V1 = T ∗

1 , we have
T1Vξ1

T ∗

1 = H−1V1Vξ1
V1H

−1. Moreover, if V1 = V −1
ξ1

, then

T1Vξ1
T ∗

1 = H−1V1H
−1 = H−1V −1

ξ1
H−1.(4.3)

Consider the operator T2Vξ2
T ∗

2 . Since T2 = H−1R2, then

T2Vξ2
T ∗

2 = H−1R2Vξ2
R∗

2H
−1.

To determine R∗

2, consider the inner product (R2g, p)X , g ∈ Yobs, p ∈ X . From (3.11)–
(3.12),

(R2g, p)X = (θ∗|t=0, p)X = (C∗V2g, φ)Y = (g,R∗

2p)Yobs
,

where R∗

2p = V2Cφ, and φ is the solution to the problem

{

∂φ
∂t

− F ′(ϕ̄)φ = 0, t ∈ (0, T ),

φ|t=0 = p.
(4.4)

Thus, the operator T2Vξ2
T ∗

2 is defined by successive solutions of the following problems
(for a given v ∈ X):

Hp = v,(4.5)

{

∂φ
∂t

− F ′(ϕ̄)φ = 0, t ∈ (0, T ),

φ|t=0 = p,
(4.6)

{

−∂θ
∗

∂t
− (F ′(ϕ̄))∗θ∗ = C∗V2Vξ2

V2Cφ, t ∈ (0, T )

θ∗
∣

∣

t=T
= 0,

(4.7)

Hw = θ∗
∣

∣

t=0
,(4.8)

then

T2Vξ2
T ∗

2 v = w.(4.9)
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If V2 = V −1
ξ2

, then C∗V2Vξ2
V2C = C∗V2C and from (4.6)–(4.7) we obtain that

θ∗
∣

∣

t=0
= Hp− V1p,

where H is the Hessian defined by (3.21)–(3.23).
Then we get

R2Vξ2
R∗

2 = H − V1

and

T2Vξ2
T ∗

2 = H−1R2Vξ2
R∗

2H
−1 = H−1(H − V1)H

−1.(4.10)

From (4.3), (4.10) it follows the result for V :

V = T1Vξ1
T ∗

1 + T2Vξ2
T ∗

2 = H−1HH−1 = H−1.(4.11)

The last formula gives the covariance operator through the Hessian H defined
by (3.21)–(3.23). Note that H is the Hessian of the auxiliary DA problem (3.19)–
(3.20)(i.e. the Hessian of the cost functional S1(δu) in the auxiliary DA problem
(3.19)–(3.20)). This result coincides with well-known results reported elsewhere (e.g.
[29, 28]), which have been obtained by replacing the original nonlinear model with
the TLM from the very beginning (assuming the TLH is valid). In our analysis we do
not need the TLH, when deriving the system for errors (3.5)–(3.7). Later we require
that the operators Ti must be good approximations to T̃i. This condition could be
satisfied even if the TLH is not valid. Note also that all previous results reported are
given for a discretized problem, whereas we provide the proof for the continuous case.

Remark. The formulas (3.16)–(3.18) involve the exact solution ū, ϕ̄ which, in
fact, is not known. However, often it is supposed to be known in the framework of the
”identical twin experiment” used to tune data assimilation algorithms. On the other
hand, instead of ū, ϕ̄, one may use some optimal solution uopt, ϕopt obtained in the
course of a current data assimilation procedure. In this case, assuming u0 = uopt +ξ1,
ϕobs = Cϕopt + ξ2, we obtain the same system (3.16)–(3.18) for the deviation errors
δu = u− uopt, δϕ = ϕ− ϕopt with ū = uopt, ϕ̄ = ϕopt.

5. Algorithms for computing the covariance matrix.

5.1. BFGS. Consider the covariance operator V defined by (4.11):

V = H−1.(5.1)

There are different numerical methods to compute the covariance matrix. The
method of finite differences described in [8] computes the Hessian of the original non-
linear problem H, which remains to be inverted. We also know that in the nonlinear
case the covariance is related to the inverse Hessian of the auxiliary DA problem H ,
not to H. Besides, this method is not sufficiently accurate due to truncations used in a
local Taylor expansion and is expensive for practical implementation. The sensitivity
matrix method [29] computes directly H−1. This method is computationally efficient
if the dimension of the observation vector is much smaller than the dimension of the
state vector, and so is feasible mainly for the 3D-VAR applications. It requires full
storage of the resulting covariance matrix. The second order adjoint method allows
the action Hv to be computed, thus does not require full storage of H . The inverse
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Hessian may be constructed by solving the eigenvalue problem involving Hv using
Lanczos-type methods [24] and taking into account that H is self-adjoint.

In order to find the inverse Hessian H−1, the quasi-Newton BFGS algorithm may
also be used [26, 7]. This algorithm generates H−1 in the course of a minimization
process. Furthermore, it has been proved that for a linear-quadratic case (linear
constraints, quadratic cost functional), the sequence of the BFGS updates leads to
the exact value of H−1 in at most n iterations, where n is the state vector dimension
[10].

The use of the BFGS in this context is attractive because of the possibility of
getting the optimal solution and the covariance matrix in ’one shot’. Indeed, this is a
tempting idea in the framework of the incremental approach widely used in practical
DA. However, these are two different tasks and there are different criteria used to
measure progress. For DA problems it is natural to start minimization from the
closest initial guess available and stop iterations as soon as successive iterates become
stuck. However, a set of updates produced during this particular minimization process
may turn out to be insufficient to reveal (implicitly) the ’leading’ eigenvalues, which
are needed to approximate H−1 accurately. Since we deal with the nonlinear problem
here, we cannot solve the DA problem and find the covariance matrix at the same time.
Therefore, we intend to solve independently the auxiliary DA problem (3.19)-(3.20)
by the BFGS algorithm, then retrieve H−1 as the main result of the minimization.
Let us note that the problem (3.19)-(3.20) is defined by values ξ1 and ξ2, which could
be arbitrary non-trivial functions theoretically. We can specify these functions to
produce the best estimate of the covariance matrix. We must also choose the initial
guess for the minimization process.

Applied for solving the auxiliary DA problem (3.19)-(3.20), the BFGS algorithm
has the form [26]:

dk = H−1
k S′

1(δu
k),(5.2)

δuk+1 = δuk − αkdk,(5.3)

H−1
k+1 =

(

I − syT

yT s

)

H−1
k

(

I − ysT

yT s

)

+
ssT

yT s
,(5.4)

where s = δuk+1 − δuk, y = S′

1(δu
k+1) − S′

1(δu
k), H−1

k is the approximation to H−1

on the k-th iteration, S′

1(δu
k) is the value of the gradient of S1 in δu at the point δuk,

αk are iterative parameters, I is the identity operator.
In the limited-memory version of the algorithm (so-called LBFGS, [20]) the ma-

trices H−1
k+1 are not explicitly computed at each iteration. Instead, the algorithm

computes the action H−1
k+1v by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) for-

mula (5.4), using the last m pairs of vectors s and y, which are stored in memory in
a cyclic order. Keeping in mind potential large scale applications, we use the LBFGS
algorithm, but by taking m > n we retain all m pairs of vectors s, y produced in the
course of minimization (for now). The covariance matrix itself can be obtained by
applying successively (5.4) to the unity vectors.

Consider the auxiliary DA problem (3.19)-(3.20). There are three important
points in tuning up the BFGS algorithm for computing the covariance matrix:
a) we must specify driving functions ξ1, ξ2 entering (3.20). We suggest as follows:

ξ1 = ũ, ξ2 = Cδϕ̃,(5.5)
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where δϕ̃ satisfies the problem

{

∂δϕ̃
∂t

− F ′(ϕ̄)δϕ̃ = 0, t ∈ (0, T ),

δϕ̃|t=0 = ũ.
(5.6)

In this case, the solution of (3.19) is δu = ũ, and S1(ũ) = 0;
b) we start iterating from a most distant initial point, for example using a large con-
stant value u0 = 1035. This is done to guarantee that the number of iterations required
for minimization is sufficient to ’evoke’ all leading eigenvalues of the inverse Hessian
(we assume that the BFGS algorithm solves the eigenvalue problem implicitly). When
the approximation of the inverse Hessian accumulated in the BFGS is sufficiently ac-
curate, both the cost functional S1(δu) and the norm of the gradient start to decrease
sharply. When this acceleration is noticed, iterations must be stopped;
c) One needs the exact minimum along the direction of descent to be achieved. This is
a necessary condition for the BFGS to be an exact method for computing the inverse
Hessian [10]. We note that the auxiliary DA problem (3.19)-(3.20) is a linear problem,
therefore the analytical step search is available. Let k denote the iteration index and
dk the direction of descent built by the BFGS algorithm, then the optimal step αk

can be derived from the condition

∂S1(δu
k−1 + αdk)

∂α
= 0.(5.7)

Applying this condition to (3.20) we obtain as follows

αk = − (V1(δu
k−1 − ξ1), d

k)X + (V2(Cδϕ
k−1 − ξ2), Cϕd)Yobs

(V1dk, dk)X + (V2Cϕd, Cϕd)Yobs

,(5.8)

where ϕd and δϕk are the solutions of the problem (5.6) for ũ = dk and ũ = δuk,
respectively.

In order to compute the gradient of (3.20) given the constraints in (3.19), we
use the automatic differentiation tool TAPENADE [12]. First we differentiate the
algorithm which implements the nonlinear evolution problem (2.1) and computes the
cost functional (2.3) afterwords. The output TLM and adjoint codes are verified
using classical tests. Then we use the TLM code as a model in (3.19), (3.20), while
the adjoint code is used to compute the gradient. It is worth saying here that our
attempt to obtain the inverse Hessian using inconsistent TLM and adjoint models
(i.e. obtained using the ’differentiate-then-discretize’ approach) were unsuccessful.
When the BFGS is properly tuned and the TLM and adjoint models are consistent
the method produces the estimates of excellent quality. As an example we show
the covariance matrix for the 1D linear diffusion evolution problem in Fig.5.1 (some
additional details on this case are presented in Sect.7). Let us note that in [7] for
example, the BFGS method is considered as inferior to the Lanczos method from the
point of view of accuracy.

From now on we shall call the H-covariance an estimate of the covariance matrix
Vδu via the inverse Hessian of the auxiliary DA problem (3.19)-(3.20) obtained by the
BFGS algorithm. We also denote by σ2 := diag(V ) the H-variance.

Remark 1. The use of the LBFGS which keeps only a few latest pair-vectors
is discussed in [32] in a slightly different context (preconditioning). This possibility
cannot be ruled out in general, but it is not clear how to assess in advance the number
of latest pair-vectors to be kept in memory. We will show in numerical experiments
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Fig. 5.1. Covariance: linear diffusion problem

that in some cases it might be difficult to separate the ’leading’ eigenvalues from the
rest of the eigenvalue spectrum of the inverse Hessian. As compared to the Lanczos-
type methods, the LBFGS is probably easier to implement.

Remark 2. For all numerical examples presented in Sec.7 we verify the covariance
matrix produced by the BFGS algorithm against the exact value of H−1. That is, we
explicitly compute H as a matrix by successively applying (3.21)-(3.23) to the unity
vectors, then invert H using the singular value decomposition (SVD) technique. In
most cases the difference is small and cannot be visually noticed on the graphs.

5.2. Fully nonlinear ensemble method. In order to check the H-covariance
matrix we estimate Vδu using an ensemble (statistical) approach. Let us assume that
we know the ’true’ state ū. Then we compute ub = ū + ξ1 and ϕ̂ = Cϕ̄ + ξ2 where
ξ1, ξ2 are individual implementations of the background error and the measurement
error. Using those values we solve the original nonlinear DA problem (2.2)-(2.3) and
find the solution error δu = u− ū. This procedure is repeated n times for new values
ξ1, ξ2 each time to get the ensemble of errors δu, then the ensemble covariance matrix
is

V̂ =
1

n

n
∑

1

δuδuT .(5.9)

Another way is to generate an ensemble of solutions u, then the ensemble covariance
matrix is

V̂ =
1

n

n
∑

1

(u− Ê[u])(u− Ê[u])T ; Ê[u] =
1

n

n
∑

1

u.(5.10)
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We also define the ensemble variance as σ̂2 := diag(V̂ ).
This ensemble method must be distinguished from ensemble methods used in

filtering, e.g. [6], [33]. The main difference is that in filtering the analysis is the
current state (the cost functional is formulated for a given time instant), while we
are looking for a ’retrospective’ analysis, i.e. the initial condition. Therefore, these
ensemble methods are not suitable for the hind-cast problem. In filtering, the forecast
of the ensemble relies on a linearized forecast operator, i.e. a linearization error is
introduced into the covariance matrix at the forecast stage. Since we do not propagate
the covariance matrix in time (and, therefore, do not use any linearization) we call
this ensemble method fully nonlinear. Let us also recall that in the nonlinear case
the expectation E[u] can be biased (i.e. Ê[u] 6= ū as n → ∞), even though E[ξ1] =
E[ξ2] = 0, and that the mean value E[δu] and the covariance matrix Vδu are not
sufficient statistics to define the analysis error probability distribution function.

6. Details of numerical implementation.
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Fig. 6.1. Left - diffusion coefficient k(ϕ). Right - the background error correlation function.

6.1. Model. As a model we use the 1D nonlinear convection-diffusion equation

∂ϕ

∂t
+
∂(wϕ)

∂x
=

∂

∂x

(

k(ϕ)
∂ϕ

∂x

)

+Q(ϕ), t ∈ (0, T ), x ∈ (0, 1),(6.1)

where ϕ = ϕ(t, x), w(t) is velocity, k(ϕ) is the diffusion coefficient, Q(ϕ) is the source
term, with the Neumann boundary conditions

∂ϕ

∂x

∣

∣

∣

∣

∣

x=0

=
∂ϕ

∂x

∣

∣

∣

∣

∣

x=1

= 0.(6.2)

We use the implicit time discretization as follows

ϕi − ϕi−1

ht
+
∂(wϕi)

∂x
− ∂

∂x

(

k(ϕi)
∂ϕi

∂x

)

−Q(ϕi) = 0, i ∈ (1, ..., N), x ∈ (0, 1),(6.3)

where i is the time integration index, ht = T/N is a time step. The spatial operator
is discretized on a uniform grid (hx is the spatial discretization step, j = 1, ...,m is
the node number, m is the total number of mesh nodes) using the ’power law’ first-
order scheme as described in [25]. For each time step we perform nonlinear iterations,
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Fig. 6.2. Examples of field variable ϕ(t, x): a) diffusion-dominated case, b) convection-
dominated case, c)-d) nonlinear cases

assuming initially that k(ϕi) = k(ϕi−1), Q(ϕi) = Q(ϕi−1), and keep iterating until
(6.3) is satisfied (i.e. the norm of the left-hand side in (6.3) becomes smaller than
a threshold ǫ1 = 10−12

√
m). In all computations presented in this paper we use the

following parameters: observation period T = 0.064, discretization steps ht = 0.001,
hx = 0.005, state vector dimension m = 200.

From numerical experiments we found that the covariance matrix is most sensitive
to the variation in k(ϕ) or, more exactly, in the Peclet number Pe = w/k(ϕ). The
source term Q(ϕ) affects the covariance matrix through the transport coefficients.
For example, if k(ϕ) = const, then the independent influence of Q(ϕ) is negligible.
Thus, we concentrate our attention on the nonlinearity in k(ϕ). In order to set up
tests we consider two types of k(ϕ) as shown in Fig.6.1(left). In the first case k(ϕ)
varies smoothly from the level k1 to the level k2 within the interval [ϕ0 − ∆, ϕ0 + ∆]
subjected to the rule (6.4)(type I), in the second case k(ϕ) varies between levels k1 and
k2 and back to k1 within the interval [ϕ0 − ∆, ϕ0 + ∆] subjected to the rule (6.5)(type
II):

k(ϕ) =
1

2
(k1 + k2) −

1

2
(k1 − k2) sin (π(ϕ− ϕ0)/(2∆))(6.4)

k(ϕ) = k1 +
1

2
(k2 − k1)(1 + cos (π(ϕ− ϕ0)/(∆)))(6.5)

We can control the level of nonlinearity by changing parameters ∆ and k1, k2.
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In the following examples we compute the evolution of the initial condition given
by the expression

ϕ(0, x) =

3
∑

k=1

ak (1 − cos 2kπx) ,(6.6)

where the coefficients are: a1 = 0.5, a2 = −0.5, a3 = 0.5. We consider four differ-
ent cases: a) diffusion-dominated case k = 1.0, w = 0 (Fig.6.2(a)); b) convection-
dominated case k = 0.001, w = −2.0 (Fig.6.2(b)); c) nonlinear case w = −2.0, k(ϕ)
is defined by (6.4)(type I) with parameters k1 = 0.01, k2 = 1.0, ∆ = 0.2 and ϕ0 = 0.5
(Fig.6.2(c)); d) nonlinear case w = −2.0, k(ϕ) is defined by (6.5)(type II) with pa-
rameters k1 = 0.001, k2 = 0.2, ∆ = 0.4 and ϕ0 = 1.0 (Fig.6.2(d)).

It can be seen that in the diffusion-dominated case the initial state function ϕ(0, x)
quickly degenerates approaching a uniform value, while in the convection-dominated
case it is transported along characteristics (some dissipation due to numerical diffusion
can still be noticed). In the third case the solution exhibits a mixed behavior with
a presence of sharp local field gradients. In the fourth case one can see the most
interesting example of evolution. Here diffusion occurs only within a narrow band of
ϕ values. As a result, a smooth initial state function ends up as a polygon like shape,
while the ’central peak’ is consumed to keep sharp field gradients. We do not consider
this behavior as a meaningful physical process (even though it could be). Our purpose
is to set up such tests where nonlinear effects become dominant.

6.2. Background error covariance matrix and noise generation. In the
numerical implementation we deal with a finite-dimensional problem, hence we will
assume that all operators in the cost functional are matrices. In order to define (2.3),
(3.20) one needs to specify the weights V1 = V −1

ξ1
and V2 = V −1

ξ2
, where Vξ1

is the
background error covariance matrix and Vξ2

is the measurement error covariance ma-
trix. Those two usually represent our a-priori knowledge on the stochastic properties
of errors. If the problem (2.2) is solved repeatedly in time, then Vξ1

can be estimated
from the previous covariance matrix (or directly from the previous Hessian H).

The simplest approach is to assume that Vξ1
, Vξ2

are diagonal matrices with
the elements equal to σ2

b (j), j = 1, ...,m and σ2
obs. This could be a reasonable

assumption about Vξ2
, but it is too simplistic concerning Vξ1

. We illustrate that if Vξ1

is diagonal, then the variance looks almost trivial and can be easily predicted without
computations. Therefore, the off-diagonal elements must be introduced into Vξ1

.

In solving ill-posed inverse problems [31] it is often assumed that the solution is
a smooth function which belongs to a Sobolev space of certain order, particularly W 2

2

is defined by the norm

‖·‖2
W 2

2
(0,1) =

∫ 1

0

(

(·)2 + β∗

(

∂·
∂x

)2

+ γ∗
(

∂2·
∂x 2

)2
)

dx.(6.7)

Let us assume that the background error ξ1 is a smooth function, i.e. it belongs to
W 2

2 . In the finite-dimensional form this would be equivalent to the weight matrix

V1 = I + βA1 + γA2,(6.8)

where β = β∗/h2
x, γ = γ∗/h4

x, I, A1, A2 are m×m matrices, such that I is the identity
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matrix and A1 and A2 are as follows

A1 =







1 −1 . . . 0
−1 2 1 . . .
. . . . . .
. . . −1 2 −1
0 . . . −1 1






, A2 =











1 −2 1 . . . . 0
−2 5 −4 1 . . . .
1 −4 6 −4 1 . . .
. . . . . . . .
. . . 1 −4 6 −4 1
. . . . 1 −4 5 −2
0 . . . . 1 −2 1











.

Then the covariance matrix of the background error can be computed as follows

Vξ1
=
σ2

b

c
V −1

1 ,

where c is a diagonal element of the matrix V −1
1 taken at a node far enough from

the domain boundaries. The row of V −1
1 which corresponds to the same node for

different values β and γ is shown in Fig.6.1(right). This behavior remains unchanged
for all nodes within the interior domain, but changes in the vicinity of the boundaries.
From this figure we we may conclude that when γ increases, the correlation radius
increases, β affects the shape of the correlation function stretching it in the vertical
direction. Here we can observe elements of similarity between Tikhonov regularization
and the covariance matrix approach: the regularization parameter is related to c/σ2

b ,
parameter γ controls the correlation radius, while β is responsible for the shape of
correlation function. In numerical experiments we always assume β = 0.

Other methods exist to specify the background covariance matrix, see e.g. [13],
[3].

In order to perform ensemble computations we have to generate the error ξ1 such
that its covariance matrix is Vξ1

. Let Vξ1
= UΣUT be the SVD of Vξ1

, then the
individual error can be obtained as follows

ξ1 = U
√

Σξ(I),(6.9)

where ξ(I) is a normally distributed random series, uncorrelated, with zero mean and
standard deviation equal to the unity. This series is produced by a pseudo-random
generator, which uses the subroutines ’gasdev’ and ’run2’ as described in [27].

We assume that the observation error covariance matrix Vξ2
is diagonal with the

elements σ2
obs, therefore

ξ2 = σobsξ
(II),(6.10)

where ξII is produced by a pseudo-random generator as above. The superscripts (I),
(II) in (6.9)-(6.10) stand to show that two separate random generators are used to
produce mutually uncorrelated series ξ(I), ξ(II).

We assume that the observations ϕ̂ are available every time step at the sensor
locations x̂k, such that x̂1 = 0.2, x̂2 = 0.5 and x̂3 = 0.8. Thus, the observation
operator C is defined. The same sensor configuration is used for all computations
presented in this paper.

6.3. Minimization algorithm. In order to solve the original nonlinear DA
problem (2.2)-(2.3) we also use the quasi-Newton BFGS algorithm. In ensemble com-
putations the ’true’ state u = ū is always used as a starting point for the minimization
process. For step search we use the routine CSRCH [22], while the initial value of
descent step is obtained by (5.8). The number of function evaluations allowed in the
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step search routine is limited by 20. The BFGS algorithm is embedded into the outer
loop. This allows us to restart the minimization process from the latest approxima-
tion of the sought control u if iterations are stopped with an error message. The outer
loop stops if the restarted BFGS algorithm fails to produce any further minimization.
The final result is discarded if the norm of the gradient remains larger than a certain
threshold. The outer loop is introduced because we deal with a strongly nonlinear
problem. As the nonlinearity (controlled mainly by ∆ in (6.4)–(6.5)) and the cor-
relation radius (controlled by γ in (6.7)) grow, multiple points of zero variation of
the cost functional (2.3) start to appear and the distance between the ’true’ solution
and ’ghost’ solutions becomes noticeable. Generally, in order to search for a global
minimum one must restart from a modified value of the latest approximation of u.
However, in this paper we do not use global optimization.

7. Numerical examples.

7.1. Verification of the methods for computing covariance. In the linear
case the H-covariance is the exact estimate of the actual covariance Vδu. Therefore,
we check that the H-covariance matrix and the ensemble covariance matrix are equiv-
alent. Let n be the ensemble size. We assume that the ’true’ solution ū is given by
(6.6) and ξ1, ξ2 are individual implementations of the background error given by (6.9)
and the observation error given by (6.10). The following parameters are used in this
test: σ2

b (j) = 0.1, j = 1, ...,m, σ2
obs = 10−3; γ = 102. We compute the H-covariance

matrix as explained in Sect.5.1, and the ensemble covariance matrix V̂ for different
ensemble sizes n = 100, 400, 1600.

The results for the convection-dominated case (Fig.6.2(b)) are presented in Fig.7.1
and Fig.7.2. The bold solid line in Fig.7.1(left) shows the H-variance, other lines
show the ensemble variance (5.9) for different n. One can see that as n increases, σ̂2

converges to σ2. The same behavior holds if σ̂2 is computed using (5.10), though for
small n the ensemble variance deviates from the H-variance more strongly. In Fig.7.2
we show the H-covariance (upper/left), and the ensemble covariance for n = 100
(upper/right), n = 400 (lower/left) and n = 1600 (lower/right). It can be seen again
that when n increases, V̂ converges to V . Let us note that even though the ensemble
variance looks quite satisfactory (in relative terms) for n = 100, the off-diagonal
elements show the presence of ’ghost’ correlations of the same magnitude as true
correlations. That is, in order to obtain a good estimation of the whole covariance
matrix (rather than only its diagonal elements) one apparently needs an ensemble size
much larger than n = 100. In this respect it looks somewhat surprising that the value
n = 100 is considered as a sufficient ensemble size in [6], while n = 10 is used in [33].
It is worth mentioning that there are special methods (e.g., so-called ’localization’)
for dealing with ’ghost’ (spurious) correlations arising from small samples in ensemble
data assimilation [2].

We also compute the variance for different spatial discretization steps. These
results are presented in Fig.7.1(right). Here, the case m = 200 corresponds to the case
presented in the left panel. We can notice that as the mesh size hx = 1/m decreases,
the solution behaves consistently, converging to a limit. This behavior makes us
assured that the discretization of the convection-diffusion operator is correct.

7.2. Some properties of the variance.

7.2.1. Variance and transport coefficients. Here we discuss qualitative prop-
erties of the variance σ2, which can be considered as an optimal solution accuracy. All
results presented here are obtained for a linear problem, thus the H-variance is the
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Fig. 7.1. Left: H-variance and ensemble variance for different ensemble sizes. Right:
H-variance for different spatial discretization steps hx = 1/m.

exact estimate of the actual variance. A basic feature of the variance (which could be
predicted without computations) is that it varies from the level of observation error
variance σ2

obs at the observation points to the level of background error variance σ2
b .

This change happens within the ’region of influence’ [5], the size of which depends
mainly on the transport phenomena supported by the model and on the correlation
radius of the background error.

In Fig.7.3(left) we present the variance as a function of convection rate w in
(6.1) for the convection-dominated problem (k = 0.001, presented in Fig.6.2,b) and
γ = 102. We define a ’convective range’ as a domain of size Lc = wT measured from
the observation point in the upstream direction, which in our case coincides with the
direction of the x-axis. Apparently, perturbations in ϕ introduced outside this domain
do not reach the sensor during the observation period.

Let us look first at the case w = −0.5, Lc = 0.032 (dashed line). We can see
that at the observation points the variance σ2 is close to σ2

obs, it sharply rises up to
the background level σ2

b in the downstream direction (to the left). In the upstream
direction (to the right) there is a gentle slope within the convective range, then it
rises up sharply to the background level σ2

b . In the case w = −2, Lc = 0.128 the size
of a gentle slope in the upstream direction is larger, though not sufficient to cover
the distance between two observation points. One can also see a small transition
area between the gentle and sharp slopes, which appears due to the influence of
correlations in the background error. In the last case we consider w = −5, Lc = 0.32,
i.e. the whole area between two sensors is within the convective range. In this case
the variance σ2 is dominated by measurements. It is clear that no information can
propagate from the downstream direction, therefore σ2 ≈ σ2

b for 0 ≤ x ≤ 0.2.

Another factor which strongly affects the variance is the diffusion coefficient k(ϕ).
The influence of diffusion (dissipation) will be the focus of our investigation in Sub-
sect.7.3 when we consider the nonlinear problem. Here we show the results for the
linear problem in Fig.7.3(right), where the variance is computed for w = −2, γ = 102,
but for different values of the diffusion coefficient k = 10−3, 10−2, 10−1, 100. The
results show that diffusion acts in two contradictory ways. On one hand, it dissipates
information (shape) by smoothing the field gradients. Therefore, the variance within
the convective range increases when k(ϕ) grows (i.e. the optimal solution accuracy
deteriorates). On the other hand, diffusion is a transport phenomena by itself, so
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Fig. 7.2. H-covariance matrix and ensemble covariance matrix for different ensemble
sizes (linear case)

outside the convective range the variance decreases (i.e. the optimal solution accuracy
improves). Let us compare, for example, the variance computed for k = 10−1 (dashed
line) and for to k = 10−3 (bold solid line). We can see that at the observation points
the variance has the expected value σ2

obs, but it grows rapidly as we move upstream
(to the right). Next we can observe a gentle slope shifted upwards compared to the
convection-dominated case. This slope remains moderate as we move outside the
convective range and, eventually, in the areas 0.4 < x < 0.5 and 0.7 < x < 0.8, the
variance becomes smaller than in the convection-dominated case.

7.2.2. Variance and correlation radius of the background error. An im-
portant factor which affects the variance is the correlation radius of the background
error, in our case controlled by γ. In Fig.7.4 we show the convection-dominated case
for w = −2, but for different values γ = 0, 1, 10, 100. Here we can see that as γ
decreases the ’region of influence’ quickly diminishes. In the case γ = 0 which corre-
sponds to the uncorrelated background error, we get an improvement of σ2 (in respect
to σ2

b ) very close to the observation point only (despite being within the convective
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Fig. 7.3. H-variance. Left - as a function of convection rate w. Right - as a function of
diffusion coefficient k.

range). This example shows that the off-diagonal elements of the background error
covariance matrix are very important. If these elements are specified incorrectly, it
may affect the H-covariance in a much more stronger way than the errors due to
linearization of the error transfer operators.

Another important observation made in these experiments is that as the corre-
lation radius increases the number of iterations required to obtain the H-covariance
increases correspondingly. For example, we needed 31 iterations for γ = 0, (compare
to the number of unknowns m = 200), 120 iterations for γ = 1 and about 200 iter-
ations for γ ≥ 10, i.e. essentially m. This can be explained by the fact that as γ
increases the eigenvalue spectrum of the inverse Hessian shrinks, i.e. the eigenvalues
of the inverse Hessian become badly separated and the number of required iterations
naturally rises.

Remark. Let us note that due to (3.23) the Hessian H involves the matrix V1.
For β = 0 (as always taken in numerical experiments), it follows from (6.8) that the
eigenvalues µk of V1 are defined by µk = 1 + γλk, where λk > 0 are the eigenvalues
of the matrix A2. The difference between the maximal and minimal eigenvalues is
determined by µmax − µmin = γ(λmax − λmin). It tends to the infinity as γ → ∞ for
H . A similar difference for H−1 tends to zero, therefore the spectrum of H−1 shrinks.
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Fig. 7.4. H-variance as a function of correlation radius (related to γ).
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7.3. Non-linear problem. In the linear case the relationship (5.1) holds ex-
actly, in the nonlinear case there could still be some confusion. First, there exists no
exact relationship. It must be clearly stated that the covariance Vδu can be approx-
imated by the H-covariance. Hence, there is no need to mention the Hessian of the
original nonlinear DA problem H in this respect. Apparently, the best approximation
can be achieved when ϕ̄ in (3.19) is the solution to the problem (2.1) with u = ū,
where ū is a ’true’ initial condition. At a glance this looks senseless since we do not
usually know the true value of controls (if we knew them, there would be no need
to solve any DA problem). However, a classical methodology for creating and tuning
DA algorithms is a so-called ’identical twin experiment’, where bogus ’true’ controls
are specified. Thus, we can compute the covariance on a bogus ’true’ initial condition
and use this covariance as a reference to investigate its sensitivity to the variation
uopt − ū, where uopt is an optimal solution actually available after solving the DA
problem using real data.
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Fig. 7.5. H-variance and ensemble variance. Upper(left) - case A. Upper(right) - case
B, Lower - case C.

Let us assume that we know a ’true’ initial condition. Even in this case we can
get only an approximation of the covariance Vδu. It is usually said that this must be
a good approximation if the TLH is valid. However, the TLH is a sufficient ’local’
condition. From our consideration we may conclude that we actually need the oper-
ators T1, T2 to be a good approximation of the error transfer operators T̃1, T̃2. This
consideration is different because T̃1, T̃2 are operators which involve time integration
and, therefore, can be stable to local perturbations. Even though this statement is
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difficult to prove rigorously, we will try to illustrate it by numerical examples. Here
for a nonlinear case, we compute the H-covariance and compare it to the ensemble
covariance V̂ . We present three examples: case A - in Fig.7.5(upper/left), case B -
in Fig.7.5 (upper/right), case C - in Fig.7.5(lower). In case A we use the constitutive
formula (6.4) with parameters k1 = 0.05, k2 = 1.0, ϕ0 = 0.5, ∆ = 0.2; the convection
rate w = −5. In case B we use (6.5) with parameters k1 = 10−3, k2 = 1.0, ϕ0 = 1.0,
∆ = 0.4; the convection rate w = −5. In case C we use (6.5) with parameters
k1 = 10−2, k2 = 0.2, ϕ0 = 1.0, ∆ = 0.4; the convection rate w = −2. In cases A,B

the ensemble size is n = 1600, in case C we take n = 400. In all figures we show
the H-variance (in solid line) and the ensemble variance computed with (5.9) (in line
marked with circles). We also present the linear bounds, i.e. values of σ2 for a linear
problem solved for k(ϕ) = k1 (in dash-dotted line) and for k(ϕ) = k2 (in dashed line).
Naturally, in the nonlinear case the variance is situated between the linear bounds.
The H-covariance matrix which corresponds to case C is presented in Fig.7.6(left),
the ensemble covariance matrix for n = 400 - in Fig.7.6(right). A good match be-
tween the H-variance and the ensemble variance can be noticed. It is satisfactory for
off-diagonal elements given the ensemble size n = 400. We can see, however, that
some distinctive details of the covariance presented by the H-covariance matrix are
not properly resolved in the ensemble covariance.
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Fig. 7.6. H-covariance (left) and ensemble covariance (right), for nonlinear case C

This result should be appreciated by taking into account the following fact: pa-
rameters in (6.4), (6.5) are chosen such that the nonlinear DA problem (2.2)-(2.3) is
on the edge of solvability (as a single-extremum problem, at least). In all cases we
had to discard about 15 − 20% of ensemble runs, because the solution process was
not properly converging in terms of the gradient norm. A ’critical’ set of parameters
in (6.4)-(6.5) had been defined beforehand by the ’trial and error’ approach. When
a certain constitutive model for k(ϕ) is chosen, we solve the nonlinear DA problem
starting from different initial points. Sometimes the iterations either converge to a
’ghost’ minima, while the estimate of the unknown initial condition remains far from
the ’true’ state, or stick in places where the numerical gradient becomes false. We
should be reminded at this point that we use a consistent adjoint model, which has
passed successfully the gradient test (with the minimum of the classical V-shape curve
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reaching about 10−16).
Another difficulty with the ensemble approach is a rapidly increasing computa-

tional cost of a single nonlinear minimization procedure as the nonlinearity increases.
First, the forward model itself requires nonlinear iterations at every time step. In
case C for example, the average number of nonlinear iterations is about 15− 20 for a
’true’ initial condition which is smooth, but this number could be much larger when
the current approximation of solution (obtained in the course of minimization) con-
tains sharp field gradients. When the time step is reduced, the number of nonlinear
iterations decreases accordingly, so the overall computational cost remains nearly the
same. The number of iterations in the nonlinear control loop is 200−250. In the same
case for the auxiliary DA problem (3.19)-(3.20) the BFGS usually needs about 200
iterations (the same number as the size of the problem), while the nonlinear evolution
problem is solved only once and its solution ϕ̄ is saved in memory. In case C one run
of the BFGS algorithm for the auxiliary (linearized) DA problem is noticeably less
expensive (up to 102 times) than a run for the nonlinear DA problem (which must be
done n times to get an ensemble). For the explicit time discretization scheme, which
means a small time integration step, the computational cost of the two methods could
be rather similar.
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Fig. 7.7. Left - optimal solution. Right - H-variance based on this optimal solution.

7.4. On the validity of the tangent linear hypothesis. We mentioned be-
fore that we would like to check how well the TLH is actually satisfied. It requires
that the approximation (3.15) is valid for any possible optimal solution ϕopt. The
solution space is formed by those optimal solutions which correspond to all possi-
ble individual implementations of errors ξ1, ξ2 given their stochastic properties. We
generate an optimal solution (Fig.7.7(left)) using a certain arbitrary implementation
of the background error ξ1, assuming ξ2 = 0 (all parameters correspond to case C ).
Here we show the ’true’ state (in faint solid line), the background (in dashed line) and
the corresponding optimal solution (in solid line marked by circles). For this optimal
solutions we compute

dF (1) = F (ϕopt) − F (ϕ̄),

where F (·) is a spatial differential operator in (6.1) and

dF (2) = F ′(ϕ̄)(ϕopt − ϕ̄),
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where F ′(ϕ̄) is the derivative of F , or its TLM. If the TLH is valid, then dF (1) ≈ dF (2).
Functions dF (1) and dF (2) for different times are presented in Fig.7.8 in solid and

dashed lines correspondingly. These pictures show that the TLH is not actually valid
in this particular case. Nevertheless, the H-covariance and the ensemble covariance
(Fig.7.5(lower)) are in good agreement.

It has been mentioned before that we need the operators T1, T2 to be a good
approximation of the error transfer operators T̃1, T̃2. For example, one could impose
a condition

diag
(

η1η
T
1 + η2η

T
2

)

<< diag
(

T1ξ1ξ
T
1 T

T
1 + T2ξ2ξ

T
2 T

T
2

)

,(7.1)

where

η1 =
(

T̃1 − T1

)

ξ1, η2 =
(

T̃2 − T2

)

ξ2,

Since T̃1, T̃2, T1, T2 are operators which include time integration, the condition (7.1)
might be satisfied even though the TLH is locally (time, space) violated. Further-
more, one actually needs to satisfy (7.1) in an average sense on a set of all possible
implementations of ξ1, ξ2. Therefore, instead of (7.1) one may consider

diag
(

E[(η1η
T
1 ] +E[η2η

T
2 ]
)

<< diag
(

T1Vξ1
T T

1 + T2Vξ2
T T

2

)

.(7.2)

The condition (7.2) should be significantly less demanding than (7.1).
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Fig. 7.8. Verification of the tangent linear hypothesis (TLH). Solid lines - nonlinear
error, dashed lines - the TLM predicted error.

7.5. On a ’bias’ in the H-covariance. For all computations presented above
we have assumed that ϕ̄ is a ’true’ state evolution. In practice the true initial condition
is unknown, but we know a certain optimal solution uopt which approximates it.
Therefore, there is no other option but to use ϕopt as ϕ̄ in (3.19)-(3.20). Let us
consider the H-variance computed on a bogus ’true’ state as a reference value. We
compare it to the H-variance computed on an optimal solution (we consider the
optimal solution presented in Fig.7.7(left),case C.
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The result of this comparison is shown in Fig.7.7(right). The Figure presents
only the central part of the domain, where the nonlinear effects are strong. We can
note that the H-variance based on the optimal solution (in bold solid line) deviates
from the reference value (in faint solid line). This (individual) deviation is essen-
tially larger than the difference between the H-variance and the ensemble variance
(Fig.7.5(lower)), but it is, of course, much smaller than the local differences between
dF (1) and dF (2) presented in Fig.7.8.

From this example we conclude that the H-covariance matrix computed on an
available optimal solution could be more sensitive to the individual error in this op-
timal solution (uopt − ū), than to the errors caused by linearization the error transfer
operators. This individual error causes a bias in the H-covariance matrix. A similar
bias is also presented in the ensemble covariance matrix.

Finally, by dashed line in Fig.7.7(right) we show the diagonal elements of H−1,
where H is the Hessian of the original nonlinear DA problem (2.2)-(2.3) defined in
the Appendix. We compute H explicitly as a matrix, then invert this matrix using
the SVD technique. As expected, diag(H−1) is different from the H-variance (see
the area confined by the ellipse) when computed on the optimal solution ϕopt. The
difference between H and H is the presence of the second order term in H (A.4). If
H is computed on a ’true’ state (and ξ2 = 0), then ϕ∗ = 0 and this term vanishes,
otherwise it is not zero. We notice that in the presence of the second order term
the variance computed on ϕopt deviates from the reference value even further. This
example supports our point of view that the covariance matrix must be approximated
by H−1, not by H−1.

7.6. H-variance for a simple ’benchmark’ non-linear model. In order to
provide an extra check of our method we consider a simple nonlinear evolution model

xi+1 = x1+α
i , i = 0, ..., N,(7.3)

where x is a time dependent scalar variable, i is the time integration index, N is
the number of time steps and α > 0 is a constant parameter. We formulate the
initial-value DA problem for the cost functional

S(x0) =
1

2

N
∑

i=0

(xi − x̂i)
2(7.4)

where x̂ is the observation data. This model had been suggested in [34] to investigate
the impact of validity of the TLH on the accuracy of H estimated via H , where H
is the Hessian of the DA problem related to (7.3)-(7.4), H is the Hessian of the DA
problem for a model obtained by linearizing the equation (7.3). As a measure of
impact the authors consider the relative error RH = |1 −H/H |.

We define the relative error in the covariance estimate as RV = |1−V̂ /V |, where V̂
is obtained by the fully nonlinear ensemble method for a large ensemble size (n = 104),
and V = H−1 is the H-covariance. For the parameters used in [34] (x0 = 100, N =
144, α = 0.0048, σm = 0.15xN) we have obtained RV ≈ 10%, while RH ≈ 150% is
reported in [34]. This result shows thatRV cannot be correctly assessed by considering
RH . It also confirms that H−1 could approximate the actual covariance matrix Vδu

much better than H approximates H.

Conclusions. In this paper we consider the initial-value optimal control problem
for a nonlinear evolution model. This is a typical DA problem often considered in
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numerical weather prediction and oceanographic applications. The analysis can be
used either for now-cast or hind-cast purposes. Correspondingly, the analysis error
covariance matrix can be used as a basis for computing the background covariances
or as a hind-cast solution quality estimate. The analysis error may be related to
the errors of the input data via the error transfer operators without direct use of
the tangent linear hypothesis. The approximation (linearization) of the error transfer
operators allows the covariance operator to be derived which turns out to be the
inverse Hessian of the auxiliary DA problem. This Hessian does not coincide in
general with the Hessian of the original nonlinear DA problem. With the use of the
quasi-Newton BFGS unconstrained minimization method, a numerical algorithm is
constructed to compute an estimate of the analysis error covariance matrix as the
inverse Hessian. We refer to this estimate as the ’H-covariance’. The algorithm needs
a special choice of initial guess, input functions in the auxiliary DA problem and
the exact analytical step search for minimization along the direction of descent. We
develop a fully nonlinear ensemble method, which allows us to check the accuracy
of the H-covariance matrix in the nonlinear case. We also suggest a method for
generating the background error covariance matrix based on the assumption that the
state variable (this is a uni-variate case) belongs to the Sobolev space of a certain
power. As a model we use the 1D nonlinear convection-diffusion equation with a
strong nonlinearity in the diffusion coefficient. A series of numerical experiments
have been performed. Finally, the following conclusions are formulated:
1. In a nonlinear case the covariance operator can be approximated by the inverse
Hessian of the auxiliary DA problem based on the TLM constraints (H-covariance).
It is our belief that this result is novel and has not been formulated in an operator
form before.
2. In certain circumstances the H-covariance can be used as an estimate of the
covariance operator/matrix far beyond the validity of the tangent linear hypothesis.
This is possible because the analysis error and data errors are related by the error
transfer operators, which might be fairly robust to the local TLH violations. Although,
we accept that our results could still be related to the choice of models.
3. In practice, the exact solution is unknown. Instead, the auxiliary DA problem must
be defined using an optimal solution (obtained as a result of DA). This substitution
distorts (biases) the H-covariance matrix. A similar bias is present in the ensemble
covariance matrix, i.e. this is a general difficulty common to both methods. The
magnitude of the bias could be significantly larger than the linearization error.
4. The correlation radius of the background error proves to be one of the most
influential parameters affecting the accuracy of the H-covariance matrix. A difficulty
is that this is, in fact, an a-priori parameter. Thus, a small error in specifying this
parameter could yield an error in the H-covariance much larger than the linearization
error.
5. We suggest a fully nonlinear ensemble method as the ultimate test to check the
H-covariance. Even though the idea of this method is very simple, it has not been
used before (in this context, at least).
6. The fully nonlinear ensemble method could be very expensive computationally,
even in parallel implementation. Besides, in order to resolve properly the off-diagonal
elements of H−1, one needs an ensemble of significant size. The gain of accuracy
due to considering the nonlinear error evolution model could be marginal by reasons
suggested above (bias, errors in the background error covariance matrix). Therefore,
the H-covariance matrix approach remains a feasible and sufficiently accurate method



26 I. GEJADZE, F.-X. Le DIMET AND V. SHUTYAEV

when applied to nonlinear problems.
The BFGS algorithm (as presented) can be directly used in small and medium

size problems. However, additional progress is needed to develop methods for comput-
ing the action H−1(u)v or the scalar product vTH−1(u)v (v is an arbitrary vector),
which are feasible for large scale applications. The scalar product is important in
uncertainty analysis, goal-oriented control and for adaptive measurement techniques.
In this case one needs to solve the system of equations in the form H(u)p = v. The
following directions to construct a specialized solver for the equation H(u)p = v could
be considered:
a) the use of a multi-grid strategy;
b) the use of reduced order models (Proper Orthogonal Decomposition) or local ap-
proximations (splines, wavelets);
c) decomposition of the spatial domain by the ’region of influence’ principle, hence
decomposition of a global DA problem into a set of local open boundary DA problems.

A particular aim of this paper is to encourage future research on methods for com-
puting actions and scalar products involving H-covariance matrix or target elements
of this matrix that would be feasible for large scale applications.

Appendix: Hessian via second-order adjoint. Consider the Hessian H(u)
of the functional (2.3); it depends on u ∈ X (which may be the exact solution, the
optimal solution, or some arbitrary function u ∈ X). For a fixed u ∈ X the Hessian
H(u) is defined by the successive solutions of the below-formulated problems. First
we find ϕ and ϕ∗ by solving the direct and adjoint problems (like in the optimality
system):

{

∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

(A.1)

{

−∂ϕ
∗

∂t
− (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ− ϕobs), t ∈ (0, T )

ϕ∗
∣

∣

t=T
= 0.

(A.2)

Note that here u is not necessarily the optimal solution from the optimality system
(2.4)–(2.6); it is just some fixed function at which we would like to compute the
Hessian. (Hence, in general, the functions ϕ and ϕ∗ do not satisfy the optimality
system). Note also that (A.1)–(A.2) are usual two steps when we compute the gradient
of the functional S(u) (at the point u) using the adjoint problem.

Then, the action of the Hessian H(u) on the function v ∈ X is defined by the
successive solutions of the following problems [14]:

{

∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(A.3)

{

−∂ψ
∗

∂t
− (F ′(ϕ))∗ψ∗ = (F ′′(ϕ)ψ)∗ϕ∗ − C∗V2Cψ, t ∈ (0, T )

ψ∗
∣

∣

t=T
= 0,

(A.4)

H(u)v = V1v − ψ∗|t=0.(A.5)
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Here ϕ and ϕ∗ are involved, being taken from (A.1)–(A.2). The problem (A.4) is
a so-called second-order adjoint problem [14].

Remark 1. If u is the optimal solution, then ϕ and ϕ∗ are exactly the functions
from the optimality system (2.4)–(2.6).

If u is the exact solution, and ξ2 = 0, then ϕ is the exact solution of (2.4), ϕ∗ = 0,
and the second-order term (F ′′(ϕ)ψ)∗ϕ∗ in (A.4) is omitted.

Remark 2. In the finite-dimensional space, H(u) is a matrix. To obtain the first
column of this matrix, we can choose v in (A.3)–(A.5) to be the first basis vector
v = (1, 0, . . . , 0). To obtain the second column of this matrix, we can choose v in
(A.3)–(A.5) to be the second basis vector v = (0, 1, 0, . . . , 0), and so on.
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