Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Changes in connectivity profiles define functionally-distinct regions in human medial frontal cortex

Johansen-Berg, H. and Behrens, T.E.J. and Robson, M.D. and Drobnjak, I. and Rushworth, M.F.S. and Brady, J.M. and Smith, S.M. and Higham, D.J. and Matthews, P.M. (2004) Changes in connectivity profiles define functionally-distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences, 101 (26). pp. 13335-13340.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A fundamental issue in neuroscience is the relation between structure and function. However, gross landmarks do not correspond well to microstructural borders and cytoarchitecture cannot be visualized in a living brain used for functional studies. Here, we used diffusion-weighted and functional MRI to test structure-function relations directly. Distinct neocortical regions were defined as volumes having similar connectivity profiles and borders identified where connectivity changed. Without using prior information, we found an abrupt profile change where the border between supplementary motor area (SMA) and pre-SMA is expected. Consistent with this anatomical assignment, putative SMA and pre-SMA connected to motor and prefrontal regions, respectively. Excellent spatial correlations were found between volumes defined by using connectivity alone and volumes activated during tasks designed to involve SMA or pre-SMA selectively. This finding demonstrates a strong relationship between structure and function in medial frontal cortex and offers a strategy for testing such correspondences elsewhere in the brain.