Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The role of stable isotopes in human identification : a longitudinal study into the variability of isotopic signals in human hair and nails

Fraser, I. and Meier-Augenstein, W. and Kalin, Robert (2006) The role of stable isotopes in human identification : a longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Communications in Mass Spectrometry, 20 (7). pp. 1109-1116.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Recent natural catastrophes with large-scale loss of life have demonstrated the need for a new technique to provide information for disaster victim identification when DNA methods fail to yield the identification of an individual, or in other situations where authorities need to determine the recent geographical life history of people. The latter may be in relation to the identification of individuals detained on suspicion of terrorism or in relation to people-trafficking or smuggling. One proposed solution is the use of stable isotope profiling (SIP) using isotope ratio mass spectrometry (IRMS). Exploiting the link between the isotopic signal of dietary components and the isotopic composition of body tissue, the aim of this study was to refine a non-invasive method of analysing human material such as scalp hair and fingernails using SIP and to assess the degree of natural variability in these profiles. Scalp hair and fingernail samples were collected from British and non-British volunteers at Queen's University Belfast every 2 weeks for a minimum of 8 months. Samples were analysed using IRMS to determine their isotopic composition for C-13, N-15, H-2 and O-18. The results of this longitudinal study yielded information on the natural variability of the isotopic composition of these tissues. The data demonstrate the relatively low degree of natural variation in the C-13/N-15 isotopic abundance of scalp hair and fingernails whilst greater variations were recorded in the hydrogen and oxygen values of the same samples. The N-15 and O-18 values of nail are noticeably more variable than that of scalp hair from the same subject. A hypothesis explaining this trend is put forward based on the faster rate of formation of hair than of nails. This means that there is less time for the compounds forming hair to be affected by biochemical processes that could alter their isotopic signature. Copyright (c) 2006 John Wiley & Sons, Ltd.