Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Establishment of a mammary stromal fibroblastic cell line for in vitro studies in mice of mammary adipocyte differentiation

Nakatani, Hajime and Aoki, Naohito and Okajima, Tetsuya and Nadano, Daita and Flint, D.J. and Matsuda, Tsukasa (2010) Establishment of a mammary stromal fibroblastic cell line for in vitro studies in mice of mammary adipocyte differentiation. Biology of Reproduction, 82 (1). pp. 44-53. ISSN 0006-3363

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Mammary stromal adipose tissue remodeling is important for appropriate mammary gland development during pregnancy, lactation, and involution. However, the precise mechanisms underlying mammary stromal adipose tissue remodeling remain unclear. We have established a mammary stromal, fibroblastlike cell line (MSF) from primary mouse mammary culture by introducing a temperature-sensitive simian virus-40 large tumor antigen. Among several hormones related to mammary gland development, hydrocortisone was found to commit MSF cells to a preadipocyte lineage, whereas insulin was found to induce extracellular matrix-dependent adipogenic differentiation of the cells, as assessed by lipid accumulation and marker gene expression. Interestingly, such hormone-induced adipogenic differentiation of MSF cells, but not 3T3-L1 cells, was suppressed by prolactin through its receptor and downstream STAT5. Furthermore, coculture of MSF cells with mammary epithelial HC11 cells and culture in HC11-conditioned medium also suppressed adipogenic differentiation of MSF cells. We have demonstrated that adipogenic differentiation of at least some populations of mammary stromal cells is modulated by lactogenic hormones and humoral factors from epithelial cells, suggesting that the response of these mammary cells may differ from adipocytes at other sites. We believe that the MSF cell line will prove a useful model to elucidate mammary stromal adipose development in vitro as well as represent an important first step toward developing stable adipocyte cell lines that faithfully represent their site of origin.

Item type: Article
ID code: 16025
Keywords: adipocyte, insulin, involution, lactation, mammary gland, prolactin, stromal tissue, Therapeutics. Pharmacology, Pharmacy and materia medica, Microbiology, Cell Biology
Subjects: Medicine > Therapeutics. Pharmacology
Medicine > Pharmacy and materia medica
Science > Microbiology
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Related URLs:
Depositing user: Ms Ann Barker-Myles
Date Deposited: 10 Mar 2010 18:58
Last modified: 28 Mar 2014 05:23
URI: http://strathprints.strath.ac.uk/id/eprint/16025

Actions (login required)

View Item