Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Confocal laser scanning microscopy using a frequency doubled vertical external cavity surface emitting laser

Esposito, E. and Keatings, Stefanie and Gardner, Kyle and Harris, J. and Riis, E. and McConnell, G. (2008) Confocal laser scanning microscopy using a frequency doubled vertical external cavity surface emitting laser. Review of Scientific Instruments, 79 (8). ISSN 0034-6748

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report on a frequency doubled 980 nm vertical external cavity surface emitting laser for applications in confocal laser scanning microscopy. The beam quality, wavelength flexibility, and low noise characteristics of this compact source make this prolific imaging technique an exemplary tool. Single pass frequency doubling via KNbO3 was demonstrated, yielding 1.8 mW at 490 nm with a near diffraction limited beam quality. Detailed analysis and comparison of the laser performance with the current standard argon ion laser revealed clear advantages of the solid-state source for confocal imaging. Imaging of fluorescein and eGFP labeled biological samples using the attenuated solid-state source provided high-resolution images at lower cost and with improved reliability. ©2008 American Institute of Physics