Copper N2S2 Schiff base macrocycles: the effect of structure on redox potential

Taylor, M.K. and Trotter, Katherine D. and Reglinski, J. and Berlouis, L. and Kennedy, A.R. and Spickett, C.M. and Sowden, Rebecca J. (2008) Copper N2S2 Schiff base macrocycles: the effect of structure on redox potential. Inorganica Chimica Acta, 361 (9-10). pp. 2851-2862. ISSN 0020-1693 (https://doi.org/10.1016/j.ica.2008.02.021)

Full text not available in this repository.Request a copy

Abstract

A series of bis-salicylidene based N2S2 copper macrocycles were prepared, structurally characterised and subjected to electrochemical analysis. The aim was to investigate the effects of length of polymethylene chains between either the imine donors or the sulfur donors on redox state and potential of the metal. The complexes structurally characterised had either distorted square planar or tetrahedral geometries depending on their oxidation state (Cu2+ or Cu+, respectively), and the N-(CH2)n-N bridge was found to be most critical moiety in determining the redox potential and oxidation state of the copper macrocycles, with relatively little change in these properties caused by lengthening the S-(CH2)n-S bridge from two to three carbons. In fact, a weakness was observed in the complexes at the sulfur donor, as further lengthening of the S-(CH2)n-S methylene bridge to four carbons caused fission of the carbon-sulfur bond to give dimeric rings and supramolecular assemblies. Cu+ complexes could be oxidised to Cu2+ by tert-butylhydroperoxide, with a corresponding change in the spectrophotometric properties, and likewise Cu2+ complexes could be reduced to Cu+ by treatment with β-mercaptoethylamine. However, repeated redox cycles appeared to compromise the stability of the macrocycles, most probably by a competing oxidation of the ligand. Thus the copper N2S2 macrocycles show potential as redox sensors, but further development is required to improve their performance in a biochemical environment.