Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Instability of the salinity profile during the evaporation of saline groundwater

Il'ichev, Andrej T. and Tsypkin, George G. and Pritchard, David and Richardson, Chris N. (2008) Instability of the salinity profile during the evaporation of saline groundwater. Journal of Fluid Mechanics, 614. pp. 87-104. ISSN 0022-1120

This is the latest version of this item.

[img]
Preview
PDF (strathprints015970.pdf)
strathprints015970.pdf

Download (235kB) | Preview

Abstract

We investigate salt transport during the evaporation and upflow of saline groundwater. We describe a model in which a sharp evaporation-precipitation front separates regions of soil saturated with an air-vapour mixture and with saline water. We then consider two idealised problems. We first investigate equilibrium configurations of the fresh-water system when the depth of the soil layer is finite, obtaining results for the location of the front and for the upflow of water induced by the evaporation. Motivated by these results, we develop a solution for a propagating front in a soil layer of infinite depth, and we investigate the gravitational stability of the salinity profile which develops below the front, obtaining marginal linear stability conditions in terms of a Rayleigh number and a dimensionless salt saturation parameter. Applying our findings to realistic parameter regimes, we predict that salt fingering is unlikely to occur in low-permeability soils, but is likely in high-permeability (sandy) soils under conditions of relatively low evaporative upflow.

Available Versions of this Item