Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Metabolic profiling of lignan variability in Linum species of section Syllinum native to Bulgaria

Vasilev, Nikolay and Ebel, Rainer and Edrada-Ebel, RuAngelie and Fuss, Elizabeth and Alfermann, Wilhelm. A. and Ionkova, Illana and Petrova, Ana and Repplinger, Miriam and Schmidt, Thomas. J. (2008) Metabolic profiling of lignan variability in Linum species of section Syllinum native to Bulgaria. Planta Medica, 74 (3). pp. 273-280. ISSN 0032-0943

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Lignans in eighteen samples of Linum species (L. tauricum ssp. tauricum, serbicum, bulgaricum and linearifolium; L. elegans; L. flavum ssp. sparsiflorum, L. capitatum var. laxiflorum), all members of the section Syllinum occurring in Bulgaria, were analysed by HPLC-ESI/MS and HPLC-UV/DAD. The ESI/MS fragmentation pathways recently established for aryltetralin lignans are now extended to ester and glycoside derivatives. In total, 22 different lignans, mainly of the aryltetralin type, were identified. 6-Methoxypodophyllotoxin and its glucoside were present as major constituents in all samples. Differences between the investigated taxa were observed especially with respect to the accumulation of 6-deoxy-7-hydroxy-aryltetralins such as podophyllotoxin and of 6-hydroxy-7-deoxy-aryltetralin lignans of the peltatin type. The distribution of aryltetralin lignans with different oxygenation patterns in the various samples, and correlations between the chemical data and the molecular phylogeny based on an analysis of ITS sequences of the investigated species are discussed.