Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Metabolic profiling of lignan variability in Linum species of section Syllinum native to Bulgaria

Vasilev, Nikolay and Ebel, Rainer and Edrada-Ebel, RuAngelie and Fuss, Elizabeth and Alfermann, Wilhelm. A. and Ionkova, Illana and Petrova, Ana and Repplinger, Miriam and Schmidt, Thomas. J. (2008) Metabolic profiling of lignan variability in Linum species of section Syllinum native to Bulgaria. Planta Medica, 74 (3). pp. 273-280. ISSN 0032-0943

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Lignans in eighteen samples of Linum species (L. tauricum ssp. tauricum, serbicum, bulgaricum and linearifolium; L. elegans; L. flavum ssp. sparsiflorum, L. capitatum var. laxiflorum), all members of the section Syllinum occurring in Bulgaria, were analysed by HPLC-ESI/MS and HPLC-UV/DAD. The ESI/MS fragmentation pathways recently established for aryltetralin lignans are now extended to ester and glycoside derivatives. In total, 22 different lignans, mainly of the aryltetralin type, were identified. 6-Methoxypodophyllotoxin and its glucoside were present as major constituents in all samples. Differences between the investigated taxa were observed especially with respect to the accumulation of 6-deoxy-7-hydroxy-aryltetralins such as podophyllotoxin and of 6-hydroxy-7-deoxy-aryltetralin lignans of the peltatin type. The distribution of aryltetralin lignans with different oxygenation patterns in the various samples, and correlations between the chemical data and the molecular phylogeny based on an analysis of ITS sequences of the investigated species are discussed.