Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Differential inhibition of high and low Mr thioredoxin reductases of parasites by organotelluriums supports the concept that low Mr thioredoxin reductases are good drug targets

McMillan, P.J. and Patzewitz, E.M. and Young, S.E. and Westrop, G.D. and Coombs, G.H. and Engman, L. and Muller, S. (2009) Differential inhibition of high and low Mr thioredoxin reductases of parasites by organotelluriums supports the concept that low Mr thioredoxin reductases are good drug targets. Parasitology, 136 (1). pp. 27-33. ISSN 0031-1820

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Thioredoxin reductase (TrxR), a NADPH-dependent disulfide oxidoreductase, is vital in numerous cellular processes including defence against reactive oxygen species, cell proliferation and signal transduction. TrxRs occur in 2 forms, a high Mr enzyme characterized by those of mammals, the malaria parasite Plasmodium falciparum and some worms, and a low Mr form is present in bacteria, fungi, plants and some protozoan parasites. Our hypothesis is that the differences between the forms can be exploited in the development of selective inhibitors. In this study, cyclodextrin- and sulfonic acid-derived organotelluriums known to inhibit mammalian TrxR were investigated for their relative efficacy against P. falciparum TrxR (PfTrxR), a high Mr enzyme, and Trichomonas vaginalis TrxR (TvTrxR), a low Mr form of TrxR. The results suggest that selective inhibition of low Mr TrxRs is a feasible goal.