Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Does Litomosoides sigmodontis synthesize dimethylethanolamine from choline?

Houston, K.M. and Babayan, S.A. and Allen, J.E. and Harnett, W. (2009) Does Litomosoides sigmodontis synthesize dimethylethanolamine from choline? Parasitology, 135 (1). pp. 55-61. ISSN 0031-1820

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into phosphatidylethanolamine. Isotope labelling of phosphatidylethanolamine was particularly striking with the worms taking up ~30 times as much labelled ethanolamine as choline. It was possible to detect faint labelling of Juv-p120 with [3H]-ethanolamine after prolonged exposure periods but, unlike the situation with the phospholipids, it was much more readily labelled with [3H]-choline. When pulsing with [3H]-ethanolamine it was also possible to detect isotope-labelled phosphatidylcholine, which may ultimately account for the low levels of labelling of Juv-p120. Overall our results raise the previously unconsidered but intriguing possibility that in L. sigmodontis, choline may be the precursor of DMAE.