Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Effects of culling on badger abundance : implications for tuberculosis control

Woodroffe, R. and Gilks, P. and Johnston, W.T. and Le Fevre, A.M. and Cox, D.R. and Donnelly, C.A. and Bourne, F.J. and Cheeseman, C.L. and Gettinby, G. and McInerney, J.P. and Morrison, W.I. (2008) Effects of culling on badger abundance : implications for tuberculosis control. Journal of Zoology, 274 (1). pp. 28-37. ISSN 0952-8369

PDF (11._Woodroffeetal.JournalofZoology2008(a).pdf)

Download (217kB) | Preview


Culling is often considered as a tool for controlling wildlife diseases that can also infect people or livestock. Culling European badgers Meles meles can cause both positive and negative effects on the incidence of bovine tuberculosis (TB) in cattle. One factor likely to influence the outcome of different badger culling strategies for cattle TB is the reduction in badger population density achieved. However, this reduction is difficult to measure because badgers, being nocturnal and fossorial, are difficult to count. Here, we use indices of badger abundance to measure the population impacts of two culling strategies tested in Britain. The densities of badger setts and latrines recorded before culling were correlated with the densities of badgers captured on initial culls, suggesting that both were indices of actual badger abundance. Widespread 'proactive' culling was associated with a 73% reduction in the density of badger latrines, a 69% reduction in the density of active burrows and a 73% reduction in the density of road killed badgers. This population reduction was achieved by a coordinated effort entailing widespread and repeated trapping over several years. However, this strategy caused only modest reductions in cattle TB incidence in culled areas and elevated incidence in neighbouring unculled areas. Localized 'reactive' culling caused a 26% reduction in latrine density, a 32% reduction in active burrow density and a 10% reduction in the density of road killed badgers, but apparently increased the incidence of cattle TB. These results indicate that the relationship between badger population reduction and TB transmission to cattle is strongly non linear, probably because culling prompts changes in badger behaviour that influence transmission rates. These findings raise serious questions about the capacity of badger culling to contribute to the control of cattle TB in Britain.