Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Characterization of microscope objective lenses from 1,400 to 1,650 nm to evaluate performance for long-wavelength nonlinear microscopy applications

Keatings, Stefanie Renaud and Zhang, Wei and McConnell, G. (2008) Characterization of microscope objective lenses from 1,400 to 1,650 nm to evaluate performance for long-wavelength nonlinear microscopy applications. Microscopy Research and Technique, 71 (7). pp. 517-520. ISSN 1059-910X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We have demonstrated a simple method for characterization of objective lens performance at longer wavelengths for 3PLSM and THG imaging. We investigated a range of air and oil-immersion objective lenses across a wavelength range of 1,400-1,650 nm using a synchronously pumped optical parametric oscillator laser source. In the first instance, we investigated the percentage light transmission across this spectral range. Second, we used a simple second harmonic autocorrelation pulse measurement technique to study the dispersion properties of these lenses at the range of input wavelengths. For the objective lenses investigated, we observed pulse broadening on the order of around 4%-7% for air immersion lenses and 9%-12% for oil immersion lenses. Even for the greater dispersion incurred by the application of the oil immersion lenses, these objectives are suitable for longer wavelength application in conjunction with a suitable light source. The same techniques could easily be applied for a larger range of objective lenses and adapted for alternative spectral windows and pulse durations. Microsc. Res. Tech., 2008. © 2008 Wiley-Liss, Inc.