
A Tension Approach to Controlling the Shape of Cubic

Spline Surfaces on FVS Triangulations

Oleg Davydov∗ and Carla Manni†

January 8, 2009

Abstract

We propose a parametric tensioned version of the FVS macro-element to control

the shape of the composite surface and remove artificial oscillations, bumps and other

undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces

over a four-directional mesh produced by two-stage scattered data fitting methods.
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1 Introduction

Interpolating or approximating schemes which guarantee the preservation of salient proper-
ties (monotonicity, convexity, etc.) of the data are of a great interest in several applications
and have received a considerable attention in the last decades. They are usually referred to
as shape preserving schemes, see [17] and references therein.

Piecewise polynomials are among the most popular functions in interpolation and ap-
proximation of given data sets but they often present undesired oscillations and bumps
extraneous to the behavior of the data, that is they are not shape-preserving.

In order to obtain shape-preserving schemes, polynomials are usually replaced by spaces
of functions (exponentials, rationals, variable degree polynomials, etc.) depending on some
shape parameters (see for example [2], [10], [11], [19], [20], [24] and references quoted therein).
Intermediate values of the shape parameters give rise to smooth approximations intermediate
between the spline and a piecewise linear or bilinear function. Due to this, the above men-
tioned methods are often called tension methods and the related shape parameters tension
parameters.

Among tension methods, we recall the parametric approach, see [22, 5, 23] and references
therein, where the approximating function (more precisely, its graph) is given by a a par-
ticular parametric curve or surface whose components belong to simple polynomial spline
spaces, such as piecewise quadratics or cubics. The amplitude of the tangent vectors at
salient points play the role of the tension parameters.

Cubic FVS macro-elements are based on a quadrangulation with two diagonals drawn
into each quadrilateral, and have certain advantages over other well known macro-elements
like Powell-Sabin quadratics and Clough-Tocher cubics, see [21].
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In this paper we use the parametric approach to produce a new shape-preserving scheme
based on the FVS cubic element and illustrate its performance by an application to scattered
data fitting, where substantial reduction of small scale artefacts in a cubic spline surface
computed by a two-stage method of [8] is achieved by an automatic procedure for the selection
of tension parameters.

The paper is organized as follows. In Section 2 we recall the definition of the FVS
triangulation and construction of C1 cubic FVS macro-elements and corresponding splines.
The details of the parametric tension approach applied to these splines are presented in
Section 3, while Section 4 is devoted to the conditions that need to be satisfied by the
tension parameters in order to ensure the shape preserving properties, such as monotonicity
and/or convexity along the edges of the quadrangulation. Section 5 presents an example
application to scattered data fitting. Finally, a conclusion is given in Section 6.

2 Cubic splines on FVS triangulations

Let Ω ⊂ R
2 be a polygonal domain, and � a quadrangulation of it, where each quadrilateral

Q ∈ � is strictly convex. Let V and E denote the sets of all vertices and edges of �,
respectively.

By drawing in the diagonals of each Q ∈ � we obtain a triangulation denoted ⊠. We say
that ⊠ is an FVS triangulation of Ω.

We denote by S1
3(⊠) the space of all C1 cubic splines on ⊠,

S1
3(⊠) = {s ∈ C1(Ω) : s|T ∈ Π3 for all T ∈ ⊠},

where Π3 is the space of all polynomials of total degree at most 3. We will refer to S1
3(⊠) as

the space of FVS splines.
The space S1

3(⊠) has a particularly simple structure because its restrictions on the quadri-
laterals Q ∈ � are the spaces of FVS macro-elements described by Fraeijs de Veubeke [12]
and Sander [16], see also [21, Section 6.5].

The dimension of s ∈ S1
3(⊠) is given by the formula 3V + E, where V = #V, E = #E ,

and every s ∈ S1
3(⊠) is completely determined by its function and gradient values at the

vertices of �,
fv = s(v), ∇fv = ∇s(v), v ∈ V, (2.1)

and the normal derivatives at the midpoints of the edges of �.
In particular, every quadrilateral patch s|Q, Q = [v1,v2,v3,v4] ∈ � is uniquely deter-

mined by the data
fvi

, ∇fvi
, i = 1, 2, 3, 4, (2.2)

and the four normal derivatives at (vi +vi+1)/2, i = 1, 2, 3, 4 (v5 := v1), as depicted in Fig. 1
(left).

Alternatively, s|Q can be described by its Bézier net. Let Tℓ denote the triangle
[vℓ,vℓ+1,w] ∈ ⊠, ℓ = 1, 2, 3, 4, where w is the intersection point of the diagonals of Q.
Each triangle patch s|Tℓ

is a cubic polynomials and can be expanded as a linear combination
of cubic Bernstein basis polynomials, i.e.,

s|Tℓ
=

∑

t∈DTℓ

ctB
Tℓ

t
, ct ∈ R,

where

DTℓ
:=

{

t
Tℓ

ijk =
ivℓ + jvℓ+1 + kw

3

}

i+j+k=3
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Figure 1: Left: Degrees of freedom of a FVS macro element. The dots and circles at the
vertices depict function values and gradients, respectively. The dashes at the middle points
of the edges depict normal derivatives. Right: domain points in DQ.

and

BTℓ

t
= BTℓ

ijk =
3!

i!j!k!
bi
1b

j
2b

k
3 if t = tijk,

with b1, b2, b3 being the barycentric coordinates with respect to Tℓ. We also write ct = cTℓ

ijk if

t = t
Tℓ

ijk

The elements of the sets DTℓ
are called domain points, and we denote the unions of these

sets as follows
DQ := DT1

∪ DT2
∪ DT3

∪ DT4
, D⊠ :=

⋃

Q∈⊠

DQ.

The set DQ is illustrated in Fig. 1 (right). Since any s ∈ S1
3(⊠) is continuous, the coefficient

ct of s is uniquely defined for any t lying on common edges of different triangles in ⊠.
Therefore s is uniquely represented by its sequence of coefficients {ct : t ∈ D⊠}. The points

Ct = (t, ct) ∈ R
3, t ∈ D⊠,

are called control points of the spline. By connecting the control points along edges shown
in Fig. 1 (right), a wireframe object called Bézier net is obtained. In fact, any sequence of
coefficients {ct ∈ R : t ∈ D⊠} generates a Bézier net of a continuous piecewise cubic spline
s. In order for s to lie in S1

3(⊠), the Bézier net must satisfy Farin’s smoothness conditions
saying that certain groups of control points belong to the same plane. Namely, these are:

1) for any vertex v of ⊠, the control point corresponding to the domain point at v and
all control points connected to it in the Bézier net,

2) for any interior edge of ⊠, two middle control points on that edge, and the interior
points of two triangles sharing the edge.

3 Parametric tension

The splines s ∈ S1
3(⊠) can be interpreted as parametric surfaces

S(x, y) = (x, y, s(x, y))T . (3.1)

Since x and y are linear functions, they are in the space S1
3(⊠), and hence possess their own

coefficients cx
t
, cy

t
, t ∈ D⊠ with respect to the Bernstein basis polynomials.
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The parametric approach consists in introducing certain parameters in the parametric
surface S, see [23]. More precisely, let Λ = {λv}v∈V be a sequence of tension parameters
satisfying λv ∈ [0, 1]. Given a spline s ∈ S1

3(⊠), we define a parametric surface called
tensioned FVS spline

SΛ(x, y) = (XΛ(x, y), Y Λ(x, y), ZΛ(x, y))T , (x, y) ∈ Ω,

as follows. Let Q be a quadrilateral in �, and let Tℓ := [vℓ,vℓ+1,w] ∈ ⊠, ℓ = 1, 2, 3, 4, be
the subtriangles of � as in Section 2. We denote by eℓ the edge vℓ+1 − vℓ. For each ℓ, SΛ|T ℓ

is a parametric Bézier surface defined by

SΛ|T ℓ :=
∑

t∈DTℓ

CΛ
t
BTℓ

t
, (3.2)

where CΛ
t

= CT ℓ

ijk = CT ℓ

ijk(λv1
, λv2

, λv3
, λv4

) if t = tT ℓ

ijk, with

CT ℓ

300 =

(

vℓ

fvℓ

)

, (3.3)

CT ℓ

030 =

(

vℓ+1

fvℓ+1

)

, (3.4)

CT ℓ

210 = CT ℓ

300 +
λvℓ

3

(

eℓ

〈∇fvℓ
, eℓ〉

)

, (3.5)

CT ℓ

120 = CT ℓ

030 −
λvℓ+1

3

(

eℓ

〈∇fvℓ+1
, eℓ〉

)

, (3.6)

CT ℓ

201 = CT ℓ

300 +
λvℓ

3

(

w − vℓ

〈∇fvℓ
,w − vℓ〉

)

, (3.7)

CT ℓ

021 = CT ℓ

030 +
λvℓ+1

3

(

w − vℓ+1

〈∇fvℓ+1
,w − vℓ+1〉

)

. (3.8)

In addition, CT ℓ

111 is determined so that

∂SΛ|T ℓ

∂nℓ

(

vℓ + vℓ+1

2

)

=
λvℓ

+ λvℓ+1

2

(

nℓ

∂f

∂nℓ

(

vℓ+vℓ+1

2

)

)

, (3.9)

where nℓ denotes the normal to the edge eℓ. Finally, the remaining Bézier control points
CT ℓ

102,C
T ℓ

012,C
T ℓ

003 are determined so as to ensure the C1 continuity of each component of SΛ|Q
across the edges w − vℓ, ℓ = 1, 2, 3, 4.

An alternative interpretation of the above conditions is that each of XΛ(x, y), Y Λ(x, y)
and ZΛ(x, y) is a spline in S1

3(⊠) that interpolates some suitable data. For example, XΛ

satisfies the following interpolation conditions

XΛ(v) = vx, ∇XΛ(v) = (λv, 0)T , v ∈ V,

∂XΛ

∂ne

(

me

)

=
λvℓ

+λvℓ+1

2
nx

e
, e ∈ E ,

where ne denotes the normal to the edge e, me its midpoint, and vx,nx
e

the x-components
of the vectors v and ne, respectively.

From the above construction, for all λv ∈ [0, 1] the components XΛ, Y Λ and ZΛ of SΛ

are C1 functions on Ω.

4



Given Q ∈ �, it is clear that the quadrilateral patch SΛ|Q depends only on four tension
parameters λv assigned to the vertices v1,v2,v3,v4 of Q. We set

SQ = S
(λ1,λ2,λ3,λ4)
Q := SΛ|Q, Q ∈ �,

where λℓ = λvℓ
, ℓ = 1, 2, 3, 4. We refer to SQ as tensioned FVS macro-element. We will also

need the componentwise notation for SQ,

SQ = (XQ, YQ, ZQ)T = (X
(λ1,λ2,λ3,λ4)
Q , Y

(λ1,λ2,λ3,λ4)
Q , Z

(λ1,λ2,λ3,λ4)
Q )T . (3.10)

From (3.3)–(3.9) it is easy to see that S
(1,1,1,1)
Q = S|Q, where S is the parametric surface

that represents s ∈ S1
3(⊠), as defined in (3.1). On the other hand, if λ1 = λ2 = λ3 = λ4 = 0,

the Bézier control points

CT ℓ

i,j,k(0, 0, 0, 0), k = 0, 1, ℓ = 1, 2, 3, 4,

belong to the straight line in R
3 through (vℓ, fvℓ

) and (vℓ+1, fvℓ+1
), while, from the C1

continuity conditions, the remaining Bézier control points are convex combinations of them.
Thus, the following statement follows from the convex hull property of the Bézier-Bernstein
representation.

Proposition 3.1. The graph of S
(0,0,0,0)
Q is contained in the convex hull of the four control

points Cvℓ
= (vℓ, fvℓ

)T , ℓ = 1, 2, 3, 4, of the original spline s. Moreover, it includes the
straight line segments [Cvℓ

,Cvℓ+1
], ℓ = 1, 2, 3, 4.

In particular, if the control points Cvℓ
, ℓ = 1, 2, 3, 4, lie on one plane, then the graph

of S
(0,0,0,0)
Q coincides with this plane. Note that this surface resembles the behaviour of the

bilinear interpolant, see Fig. 2 (bottom).
Summarizing, the parameters λ1, λ2, λ3, λ4 act as tension parameters on the graph of the

surface patch SQ, stretching it from the classical FVS macro-element to a “straightened”
surface interpolating the data positions and reducing to an affine function along the edges
of Q, see Fig. 2.

We now turn to the question of whether the surface SQ represents the graph of a function

z = sQ(x, y). To this end we consider the transformation TQ = T
(λ1,λ2,λ3,λ4)
Q : Q → R

2 defined
by the first two components of SQ,

TQ(x, y) := (XQ(x, y), YQ(x, y))T . (3.11)

Clearly, SQ is the graph of a function defined on Q if and only if TQ is a one-to-one mapping
of Q.

Proposition 3.2. The transformation TQ is one-to-one on the boundary of Q for any λℓ ∈
[0, 1], ℓ = 1, 2, 3, 4. Moreover, TQ(Q) = Q, TQ(vℓ) = vℓ, ℓ = 1, 2, 3, 4, and the Jacobian
J(TQ) of TQ at vℓ is given by

J(TQ)(vℓ) =

[

λℓ 0
0 λℓ

]

.

Proof. From (3.3)–(3.9), TQ|eℓ
is a plane cubic Bézier curve with control points vℓ, vℓ+

λℓ

3
eℓ,

vℓ+1 −
λℓ

3
eℓ, vℓ+1, all on the edge eℓ. By the convex hull property of Bézier curves it follows

that TQ(eℓ) = eℓ. Moreover, it is easy to see that the curve has its endpoints at vℓ and
vℓ+1, and its parametrisation is strictly monotone everywhere in the interior of the interval
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Figure 2: Left: Bézier net of SQ and its projection on the x, y plane (i.e. Bézier net of TQ).
Right: graph of sQ. Top: λℓ = 1, ℓ = 1, 2, 3, 4. Center: λℓ = .4, ℓ = 1, 2; λℓ = 1, ℓ = 3, 4.
Bottom: λℓ = .1, ℓ = 1, 2, 3, 4. The vertices vℓ are numbered counterclockwise from the
origin.
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eℓ. This proves that the map TQ is one-to-one on any edge of Q. Actually, it provides a
cubic reparameterization of the given edge.

Let us consider the statement TQ(Q) = Q. From (3.3)–(3.9) and by the convex hull
property of the Bézier representation, we obtain TQ(Q) ⊂ Q since Q is convex. To prove
that Q ⊂ TQ(Q) we proceed by contradiction. If there exists p ∈ Q, p 6∈ TQ(Q), it is
possible to construct a continuous map f : Q → ∂Q such that f(p) = p for all p ∈ ∂Q
(since TQ is one-to-one on the boundary of Q): this contradicts Brower’s theorem.

Finally, the formulas for TQ(vℓ) and J(TQ)(vℓ) are easily obtainable from (3.3)–(3.9).

By a perturbation argument, because T
(1,1,1,1)
Q is the identity map and in view of Propo-

sition 3.2, TQ is one-to-one on Q if all parameters λℓ are sufficiently close to 1.
For arbitrary λℓ we can prove this property if Q is a rectangle.

Proposition 3.3. If Q is a rectangle and λℓ ∈ (0, 1], ℓ = 1, 2, 3, 4, then the transformation
TQ is one-to-one on Q and T−1

Q is of class C1.

Proof. The partial derivatives

∂XQ

∂x
,

∂XQ

∂y
,

∂YQ

∂x
,

∂YQ

∂y

are piecewise quadratic bivariate polynomials whose Bézier coefficients can be computed by
standard manipulations.

For the sake of simplicity we only consider the case when Q is the unit square, where
we place the first vertex v1 at the origin, and number all other vertices as in Fig. 1 (left).
By symmetry it is sufficient to look at one subtriangle, say T1 = [v1,v2,w]. Using the
standard notation cijk for the Bézier coefficients of a quadratic polynomial on T1, we obtain
the following expressions, where aℓ := 1 − λℓ.

∂XQ

∂x

∂XQ

∂y

c200 1 − a1 0
c110 1 + a1 + a2 0
c020 1 − a2 0
c101 1 + a2/2 (a1 − a4)/4
c011 1 + a1/2 (a3 − a2)/4
c002 1 + (a1 + a2 + a3 + a4)/8 (a1 − a2 + a3 − a4)/4

∂YQ

∂x

∂YQ

∂y

c200 0 1 − a1

c110 0 1 − (a1 + a2)/2
c020 0 1 − a2

c101 (a1 − a2)/4 1 + a4/2
c011 (a1 − a2)/4 1 + a3/2
c002 (a1 − a2 + a3 − a4)/4 1 + (a1 + a2 + a3 + a4)/8

Thus, looking at the Bézier coefficients, is easy to see that for any λℓ ∈ (0, 1], ℓ = 1, 2, 3, 4,

∂XQ

∂x
>

∣

∣

∣

∣

∂XQ

∂y

∣

∣

∣

∣

,
∂YQ

∂y
>

∣

∣

∣

∣

∂YQ

∂x

∣

∣

∣

∣

7



at any point of Q. Therefore the Jacobian of the transformation TQ diagonally dominant
and hence nonsingular at any point. In view of Proposition 3.2 this implies that TQ is
invertible because it is proper, locally invertible and invertible on the boundary, see e.g. [1].
Finally, T−1

Q is of class C1 since TQ is C1 and its Jacobian is nonsingular.

Remark 3.1. We conjecture that J(TQ) is nonsingular in Q for any convex quadrialteral Q
and any choice of λℓ ∈ (0, 1]. However, the case of a rectangle is already useful for scattered
data fitting applications, see the examples in Section 5.

Assuming that TQ is a one-to-one map of the quadrilateral Q, the graph of SQ is the
graph of a bivariate function sQ = ZQ ◦ T−1

Q . That is, by setting

(x, y)T = T
(λ1,λ2,λ3,λ4)
Q (x̃, ỹ),

the invertibility of the map TQ allows us to define a function sQ : Q → R by

sQ(x, y) = s
(λ1,λ2,λ3,λ4)
Q (x, y) := Z

(λ1,λ2,λ3,λ4)
Q (x̃, ỹ), (x, y) ∈ Q. (3.12)

It is easy to see that sQ interpolates the data (2.2), i.e.,

sQ(vℓ) = fvℓ
, ∇sQ(vℓ) = ∇fvℓ

, ℓ = 1, 2, 3, 4. (3.13)

Indeed, by (3.3) sQ(vℓ) = ZQ ◦ T−1
Q (vℓ) = ZQ(vℓ) = fvℓ

. Furthermore, from (3.3)–(3.8) it
follows that ∇ZQ(vℓ) = λℓ∇fvℓ

, and hence by Proposition 3.2 we have at vℓ

∇sQ = ∇ZQ · J(TQ)−1 = λℓ∇fvℓ

[

λℓ 0
0 λℓ

]−1

= ∇fvℓ

as soon as λℓ > 0.
By patching together the tensioned macro-elements sQ, Q ∈ �, we obtain a function

sΛ : Ω → R,
sΛ|Q := sQ, Q ∈ �,

whose graph is also given by the surface SΛ.
Let us consider the smoothness of sΛ, see also [23]. Clearly, in case that all TQ, Q ∈ �,

are invertible, we have sΛ = ZΛ ◦ (TΛ)−1, where

TΛ(x, y) = (XΛ(x, y), Y Λ(x, y))T ,

and
(TΛ)−1|Q = T−1

Q , Q ∈ �.

As mensioned above, XΛ, Y Λ, ZΛ are C1 functions on Ω, which already implies that sΛ is
a continuous function. Assuming in addition that the Jacobians of all TQ are nonsingular,
we conclude that (TΛ)−1 is a C1 mapping on Ω, which implies that sΛ ∈ C1(Ω) in this
case, which happens in particular when all Q ∈ � are rectangles and λv > 0 for all v ∈ V,
according to Proposition 3.3. Fig. 3 illustrates the smooth patching of the macro-elements
sQ together.

Summarizing, we have obtained the following result.
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Figure 3: Four tensioned FVS elements patched together: Left: λℓ = 1,. Right: λℓ = .4.

Theorem 3.4. Given any λv ∈ (0, 1], v ∈ V, assume that the Jacobian of each mapping
TQ, Q ∈ �, is nonsingular in Q. (This is always the case if Q is a rectangle.) Then the
tensioned FVS spline sΛ is well defined as a function in C1(Ω). Moreover, sΛ interpolates
the given values fv and gradients ∇fv of the corresponding FVS spline s at all vertices of �.
In the case that λv = 1, v ∈ V, sΛ coincides with s. If all λv → 0, then sΛ converges to
a continuous surface whose restriction to any Q = [v1,v2,v3,v4] ∈ � has the properties
described in Proposition 3.1, in particular its graph is contained in the convex hull of the
four points (vℓ, fvℓ

)T , ℓ = 1, 2, 3, 4.

Remark 3.2. If s ∈ S1
3(⊠) is a polynomial of first degree on Q ∈ �, then it follows from

(3.3)-(3.9) that the Bézier control points CT ℓ

i,j,k belong to the plane which is the graph of
s|Q, and the same does SQ due to the properties of Bézier-Bernstein representation. So,
the two functions sQ and s|Q have the same graph. That is, sΛ locally reproduces first
degree polynomials. This property can be used to prove second order error estimates for the
interpolation with the tensioned FVS spline, see [23].

Remark 3.3. The parametric tension approach has been applied previously to the cu-
bic Clough-Tocher and quadratic Powell-Sabin macro-elements, obtaining tensioned macro-
elements reproducing first degree polynomials as well, see [5, 23]. An advantage of the scheme
presented here over the tensioned Powell-Sabin element is the higher approximation order of
the underlying macro-element (h4 versus h3), which allows more economical representation
of smoother parts of the surface before tension parameters are chosen. On the other hand,
comparing to the tensioned Clough-Tocher element of [5], our FVS element is guaranteed
to be given by a function for all values of the tension parameters, at least in the case of a
rectangular partition, rather than for the values of λv is a neighborhood of 1 or 0. See [23]
for a comparison to different tension techniques, in particular those of [2]. Finally, since our
main theoretical results hold for a uniform type triangulation, it is worth emphasizing that
the action of the tension parameters for the FVS element is completely local, in contrast to
standard tension methods based on tensor-product structures where the tension parameters
have to be assigned to the grid lines going through the whole domain. For the sake of com-
pleteness, we mention that such a local control could also be obtained by the parametric
cubic Coons patches presented in [4]. Nevertheless, the construction in [4] is significantly
more involved than the one presented here since it builds on bicubic functions instead of
piecewise cubics. Careful numerical comparison of various tension techniques combined with
scattered data fitting is left for future research.
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Remark 3.4. A reduced FVS macro-element (with approximation order h3) has been used
in [15] to construct a C1 monotone piecewise cubic interpolant to monotone data, where
the monotonicity is required in both variables simultaneously, following [3]. The approaches
to shape preservation presented here and in [15] possess certain similarity, as in [15] the
monotonicity of the constructed surface is achieved by suitably reducing the size of the
initial gradient values at the data sites, whereas in our scheme the gradients of the parametric
components are reduced to achive monotonicity, convexity or prescribed local bounds on the
surface, see Section 4 below. Apart from a greater flexibility (various shape preserving goals
can be achieved, not only monotonicity), the advantages of the scheme presented here include
the exact interpolation of the gradients and, once again, the higher approximation order of
the underlying macro-element.

4 Selection of tension parameters

The parameters λℓ act as shape/tension parameters on the function sQ, thus they can be
selected to (automatically) control its shape. In particular, we can obtain shape preservation
on the edges of the FVS quadrilateral by using univariate selection of tension parameters if
the data is monotone and/or convex.

Assume that the data is monotone along the edge eℓ that is the quantities

fvℓ+1
− fvℓ

, 〈∇fvℓ
, eℓ〉, 〈∇fvℓ+1

, eℓ〉

are either all positive or they are all negative.
Clearly, sQ is monotone along the same edge if and only if ZQ|eℓ

(see (3.10)) is monotone
(see Proposition 3.2). Since ZQ|eℓ

is a cubic polynomial interpolating the data

fvℓ
, fvℓ+1

, λℓ〈∇fvℓ
,

eℓ

‖eℓ‖
〉, λℓ+1〈∇fvℓ+1

,
eℓ

‖eℓ‖
〉

it is well known, [13], that a sufficient condition to ensure its monotonicity is given by

max
{

λℓ〈∇fvℓ
,

eℓ

‖eℓ‖
〉, λℓ+1〈∇fvℓ+1

,
eℓ

‖eℓ‖
〉
}

≤ 3
fvℓ+1

− fvℓ

‖eℓ‖
.

Thus it suffices to select λℓ, λℓ+1 such that

λℓ ≤ min

{

1, 3
fvℓ+1

− fvℓ

〈∇fvℓ
, eℓ〉

}

, λℓ+1 ≤ min

{

1, 3
fvℓ+1

− fvℓ

〈∇fvℓ+1
, eℓ〉

}

. (4.1)

Remark 4.1. If Q is a rectangle, by standard manipulation on partial derivatives of ZQ it
turns out that in the limit case λℓ = 0, ℓ = 1, 2, 3, 4 the derivative

∂ZQ

∂eℓ

,

is a bivariate quadratic polynomial whose Bézier coefficients are non negative if the data is
increasing along both eℓ and −eℓ+2. Thus, in the limit case ZQ is monotone increasing along
directions parallel to the edge eℓ and the same holds true for sQ. In any fixed compact subset
of Q, sQ retains the same behavior for sufficiently small values of the shape parameters.

Similarly, assume the data is convex along the edge eℓ, that is

〈∇fvℓ
, eℓ〉 < fvℓ+1

− fvℓ
< 〈∇fvℓ+1

, eℓ〉.
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The graph of sQ along the same edge is the support of the planar parametric cubic curve
SQ|eℓ

. Thus, sQ is convex along eℓ if and only if the curvature of this cubic curve is nonneg-
ative that is if and only if, [18],

[

(CTℓ

2−j,j+1,0 −C
Tℓ

3−j,j,0) × (CTℓ

1−j,j+2,0 −C
Tℓ

2−j,j+1,0)
]

· (eℓ × k) ≥ 0, j = 0, 1.

where a×b denotes the vector product between a and b, and k = (0, 0, 1)T . From (3.2)–(3.9)
the previous inequalities read

fvℓ+1
− fvℓ

−
λℓ

3
〈∇fvℓ

, eℓ〉 −
λℓ+1

3
〈∇fvℓ+1

, eℓ〉 ≥

[

1 −
λℓ

3
−

λℓ+1

3

]

〈∇fvℓ
, eℓ〉

fvℓ+1
− fvℓ

−
λℓ

3
〈∇fvℓ

, eℓ〉 −
λℓ+1

3
〈∇fvℓ+1

, eℓ〉 ≤

[

1 −
λℓ

3
−

λℓ+1

3

]

〈∇fvℓ+1
, eℓ〉

that is

fvℓ+1
− fvℓ

− 〈∇fvℓ
, eℓ〉 ≥

λℓ+1

3

[

〈∇fvℓ+1
, eℓ〉 − 〈∇fvℓ

, eℓ〉
]

fvℓ+1
− fvℓ

− 〈∇fvℓ+1
, eℓ〉 ≤

λℓ

3

[

〈∇fvℓ
, eℓ〉 − 〈∇fvℓ+1

, eℓ〉
]

Thus, sQ is convex along the edge eℓ if and only if

λℓ ≤ min

{

1, 3
〈∇fvℓ+1

, eℓ〉 − [fvℓ+1
− fvℓ

]

〈∇fvℓ+1
, eℓ〉 − 〈∇fvℓ

, eℓ〉

}

λℓ+1 ≤ min

{

1, 3
[fvℓ+1

− fvℓ
] − 〈∇fvℓ

, eℓ〉

〈∇fvℓ+1
, eℓ〉 − 〈∇fvℓ

, eℓ〉

}

.

(4.2)

Finally, in view of Proposition 3.1, it is always possible to prescribe local bounds on the
tensioned surface by choosing parameters λℓ > 0, ℓ = 1, 2, 3, 4, such that

mQ ≤ sQ(x, y) ≤ MQ, (x, y) ∈ Q, (4.3)

provided mQ and MQ are any given bounds satisfying

mQ < min{fv1
, fv2

, fv3
, fv4

}, max{fv1
, fv2

, fv3
, fv4

} < MQ.

This is useful in particular for removing undesired local minima and maxima. The exact
conditions on λv that guarantee (4.3) can be easily worked out using the formulas (3.3)–(3.9)
and requiring that the Bézier coefficients ct, t ∈ DQ, satisfy the same double inequality.

5 Application to Scattered Data Fitting

The idea of tension is used extensively in practical scattered data fitting algorithms to elimi-
nate artificial oscillations and extraneous inflection points often arising in the undersampled
areas with strong changes in the surface gradient or curvature, see e.g. [25, 26], where a
tension parameter is introduced into the minimum curvature surfaces.

Our approach allows to apply tension to piecewise cubic surfaces generated by the recent
two-stage method of scattered data fitting [8, 14, 6, 7, 9] based on the extension of local
approximations to a spline in S1

3(⊠). As demonstrated in the above cited references, this
method is fast and robust and capable to produce high quality surfaces from difficult terrain
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data with strong variations in data density. Still, small scale artifacts can occur in most
difficult areas, as exemplified in Fig. 4 that represents an FVS spline computed for the Black
Forest data described in detail in [8] and available with the software package TSFIT [9]. The
parameters of the two-stage method are the same as those used in [8, Section 6.6], with the
exception that we are using in the second stage the operator Qav

1 leading to a spline in S1
3(⊠)

rather than RQav
2 which produces a C2 sextic spline.

Note that the local approximation with radial basis functions used in [6, 7] has led to
surfaces with significantly weaker artifacts, but we have chosen this example to emphasize
the effect of tension. By the same reason we have not preprocessed the data fv,∇fv produced
by the scattered data fitting algorithm by any filtering or smoothing techniques, even though
this could bring a further reduction of the artifacts.

Recall that we assign tension parameters λv to all vertices v of the quadrangulation
�. Therefore the question of automatic selection of these parameters must be addressed.
Indeed, an advantage of having a spatially distributed sequence of parameters is that it can
be adjusted to the local behaviour of the surface. As apparent from Fig. 4, the artifacts
occur in the flat terrain with extremely few data and especially in the transition regions
between the flat areas and steeper areas with higher data density. Therefore we leave the
spline surface unchanged in the regions of high slope by setting

λv = 1 whenever slope(v) > 0.05, (5.1)

where

slope(v) := max
{ |fw − fv|

‖w − v‖
: w is connected to v by an edge of �

}

.

We also avoid making tension too severe, because, as explained above, for very small values
of λv the tensioned surface becomes linear along the edges of �. Clearly, this may create
artifacts itself. Therefore we ensure that

λv > 0.15 for all v ∈ V. (5.2)

Within the constraints (5.1) and (5.2), we choose for each λv the greatest possible value such
that the monotonicity condition (4.1) is satisfied for each edge e ∈ E attached to v such that
the data is monotone along it, and the convexity condition (4.2) is satisfied for each edge
e ∈ E attached to v such that the data is convex along it.

Figs 5 and 6 demonstrate the improvements in the surface shape obtained by applying
this algorithm. Fig. 5 depicts the tensioned surface visualized from the same viewpoint that
the original spline surface in Fig. 4, whereas Fig. 6 provides a comparison of the contour
lines produced using fine grid evaluations of both surfaces. The figures confirm a substantial
reduction of artificial oscillations in the tensioned surface.

We conclude this section by mentioning that the evaluation of the tensioned surface at
a prescribed point (x, y) ∈ Q, Q ∈ � requires the inversion of the transformation TQ, see
(3.12), that is the solution of a nonlinear system described by two piecewise cubic functions.
Since the quadrangulations used in [8] consist of squares, Proposition 3.3 guarantees that
the unique solution is available for any choice of the tension parameters. Due to the Bézier
representation, the Jacobian of the transformation can be efficiently computed using the
formulas in the proof of Proposition 3.3, and the solution of the nonlinear system can be
efficiently approximated by using the Newton method. It turns out that, considering as
starting point the pair (x, y) itself (corresponding to the exact solution if λv = 1), very few
iterations of the method provide an accurate approximation of the solution. Of course, the
closer to 1 are the tension parameters associated to the vertices of Q, the more efficient is
the process. The average number of iterations needed to achieve 14 digits accuracy increases
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from 1 for λv ≈ 1 to 8 for λv = 0.5 and 10 for λv ≈ 0. The cputime per evaluation increases
with a factor of about 3. (Clearly, this figure is implementation-dependent.) The average
number of iterations per evaluation for the surface in Figs 5 and 6 is about 2.6.

6 Conclusion

We have presented a method, based on the parametric approach [22, 5, 23], to produce C1

surfaces with tension properties interpolating a given set of Hermite data at the vertices
of a quadrangulation �. The method constructs the interpolating function as a particular
parametric surface having C1 piecewise cubic components, where each component is obtained
according to the FVS cubic macro-element construction.

Each vertex of the quadrangulation is equipped with a parameter which acts as a tension
parameter “stretching” the graph of the obtained surface around the vertex itself. Each
parameter has a local effect in the sense that it influences the shape of the surface only in
the four quadrilaterals sharing the corresponding vertex.

Automatic methods for selection of the tension parameters ensuring monotonicity and/or
convexity preservation along the edges of the quadrilaterals have been presented.

It is worth to notice that the evaluation of the obtained surface at a prescribed point
requires the inversion of a piecewise cubic transformation, which can be efficiently achieved
by means of a few iterations of the Newton method.

The application of the proposed method to scattered data fitting allows to remove arti-
facts and easily control the shape of the obtained surface.
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Figure 4: FVS spline surface computed from scattered data (Black Forest data set) by the
two-stage method of [8], and a zoom showing small scale artifacts in a flat region. The small
dots represent the data.
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Figure 5: Tensioned surface obtained from the spline depicted in Fig. 4 by applying the
algorithm described in Section 5. The artefacts are significantly reduced.
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Figure 6: Contour lines of the spline surface (left) and its tensioned counterpart (right).
Top: the contour lines in the the region depicted in Figs 4 (left) and 5 (left). Middle and
bottom: contour lines in the sub-regions indicated by two boxes in the top figures.
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