Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations

Barrenechea, G.R. and Chouly, F. (2009) A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations. Zeitschrift fur Angewandte Mathematik und Mechanik, 89 (1). pp. 54-68. ISSN 0044-2267

[img]
Preview
PDF (Barrenechea-Chouly.pdf)
Barrenechea-Chouly.pdf

Download (758kB) | Preview

Abstract

A finite element method to solve the bidimensional Reduced Navier-Stokes Prandtl (RNS/P) equations is described. These equations are an asymptotical simplification of the full Navier-Stokes equations, obtained when one dimension of the domain is of one order smaller than the others. These are therefore of particular interest to describe flows in channels or pipes of small diameter. A low order finite element discretization, based on a piecewise constant approximation of the pressure, is proposed and analyzed. Numerical experiments which consist in fluid flow simulations within a constricted pipe are provided. Comparisons with Navier-Stokes simulations allow to evaluate the performance of prediction of the finite element method, and of the model itself.