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1 Introduction

Thin-film flows occur in a variety of physical contexts including, for example,
industry, biology and nature, and have been the subject of considerable the-
oretical research. (See, for example, the review by Oron, Davis and Bankoff
[4].) In particular, there are several practically important situations in which
an external airflow has a significant effect on the behaviour of a film of fluid,
and consequently there has been considerable theoretical and numerical work
done to try to understand better the various flows that can occur. (See, for
example, the studies by King and Tuck [2] and Villegas-Dı́az, Power and Ri-
ley [6].) The flow of a rivulet on a planar substrate subject to a shear stress
at its free surface has been investigated by several authors, notably Myers,
Liang and Wetton [3], Saber and El-Genk [5], and Wilson and Duffy [9]. All
of these works concern a non-perfectly wetting fluid; the flow of a rivulet of a
perfectly wetting fluid in the absence of a shear stress at its free surface has
been treated by Alekseenko, Geshev and Kuibin [1], and by Wilson and Duffy
[7, 8]. In the present short paper we use the lubrication approximation to ob-
tain a complete description of the steady unidirectional flow of a thin rivulet
of a perfectly wetting fluid on an inclined substrate subject to a prescribed
uniform longitudinal shear stress at its free surface.

2 Problem Formulation

Consider the steady unidirectional flow of a thin rivulet with constant semi-
width a and constant volume flux Q of a perfectly wetting fluid subject to a
prescribed uniform longitudinal shear stress τ at its free surface on a planar
substrate inclined at an angle α to the horizontal. Cartesian axes Oxyz are
chosen with the x-axis down the slope, the y-axis parallel to the substrate
z = 0, and the z-axis normal to the substrate. The fluid is assumed to be
Newtonian with constant density ρ, viscosity µ, and surface tension γ. The
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velocity u = u(y, z)i and pressure p = p(x, y, z) of the fluid are governed by
the familiar mass-conservation and Navier–Stokes equations subject to the
usual normal and tangential stress balances and the kinematic condition at
the free surface z = h(y), and no slip at the substrate z = 0. Since the fluid is
perfectly wetting the contact angle is zero at the contact lines y = ±a (where,
by definition, the rivulet has zero thickness).

We consider a thin rivulet with a small transverse aspect ratio ε � 1; in
this case it is appropriate to non-dimensionalise y and a with l, z and h with
εl, u with U = ρgε2l2/µ, Q with εl2U = ρgε3l4/µ, p − p∞ and τ with ρgεl,
where l = (γ/ρg)1/2 is the capillary length, g is acceleration due to gravity,
and p∞ is the uniform atmospheric pressure.

Since the flow is unidirectional, the mass-conservation equation and kine-
matic boundary condition are satisfied identically, and at leading order in ε
the Navier–Stokes equation reduces to

0 = sinα + uzz, 0 = −py, 0 = −pz − cosα, (1)

which can readily be solved subject to boundary conditions of no slip at the
substrate, u = 0 on z = 0, balances of normal and tangential stress at the
free surface, p = −h′′ and uz = τ on z = h, and appropriate conditions at
the contact lines, h = 0 and h′ = 0 at y = ±a, where the prime denotes
differentiation with respect to argument, to give the solution

u =
sin α

2
(2h − z)z + τz, p = (h − z) cosα − h′′. (2)

Substituting the solution for p into the second equation in (1) yields a third-
order ordinary differential equation for the free surface profile h, namely (h′′−
cosα h)′ = 0 to be solved subject to (??). This elementary problem was solved
by Wilson and Duffy [7] who showed that there is no solution for h when
0 ≤ α ≤ π/2 (i.e. no solution corresponding to a sessile rivulet or a rivulet
on a vertical substrate), but that there is a solution when π/2 < α ≤ π
(corresponding to a pendent rivulet), namely

a =
π

m
, h =

hm

2
(1 + cosmy) , (3)

where m =
√

| cosα| and hm = h(0) is the maximum height of the rivulet.
The volume flux down the rivulet Q is given by

Q =

∫ +a

−a

∫ h

0

u dz dy =
π

24m
(5 sinα hm + 9τ) h2

m. (4)

If the flux takes the prescribed value Q = Q̄, then (4) determines the appro-
priate value(s) of hm. Once hm is known the rivulet solution given by (2) and
(3) is completely determined. In the special case of no prescribed shear stress,
τ = 0, and in the limit of large prescribed shear stress, |τ | → ∞, we obtain
the simple explicit solutions
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Fig. 1. Sketch of Q as a function of hm

for τ > 0, τ = 0 and τ < 0, showing
when the different types of flow pattern
occur.

Fig. 2. Sketch of the five different
types of flow pattern. Regions of down-
ward flow are shaded and regions of
upward flow are unshaded.

hm =

(

24mQ̄

5π sin α

)

1

3

and hm =

(

8mQ̄

3πτ

)

1

2

, (5)

respectively.

3 Rivulet Solutions

Figure 1 shows a sketch of Q given by (4) as a function of hm for τ > 0, τ = 0
and τ < 0. For τ ≥ 0, Q is a monotonically increasing function of hm tending to
infinity as hm → ∞. In contrast, for τ < 0, Q initially decreases monotonically
to a minimum value Q = Qmin, where Qmin = 9πτ3/50m sin2 α (< 0), at hm =
hmin = −6τ/5 sinα, before increasing monotonically through the value Q = 0
at hm = hm0, where hm0 = −9τ/5 sinα, and eventually tending to infinity as
hm → ∞. The number of solutions for hm thus depends on the sign of τ and
the value of Q̄. When τ ≥ 0, there is one solution when Q̄ > 0, but there are
no solutions when Q̄ ≤ 0. When τ < 0, there is one solution when Q̄ ≥ 0 with
hm ≥ hm0 and there are two solutions when Qmin < Q̄ < 0, a “thin” solution
with 0 < hm < hmin and a “thick” solution with hmin < hm < hm0; when
Q̄ = Qmin there is a single solution hm = hmin, and when Q̄ < Qmin there are
no solutions.



4 Sullivan, Wilson and Duffy

4 Classification of Flow Patterns

Figure 2 shows a sketch of the five different types of cross-sectional flow pat-
terns that can occur; regions of downward flow (i.e. u > 0) are shaded and
regions of upward flow (i.e. u < 0) are unshaded. When τ > 0 the prescribed
shear stress acts down the substrate in cooperation with the effect of gravity.
As a result, the flow is downward throughout the rivulet (we refer to this
flow pattern as type I; see Figure 2(a)). When τ < 0, the prescribed shear
stress acts up the substrate in opposition to the effect of gravity, which leads
to more interesting behaviour than in the case τ ≥ 0. In particular, we find
that although the velocity can be downward within the rivulet, it is always
upward near the contact lines. When hm > hIII = −2τ/ sinα there is both
upward and downward flow on the free surface (type II, Figure 2(b)). When
hm = hIII the flow is upward on the free surface except at y = 0 and z = hm,
where the velocity is zero (type III, Figure 2(c)). When hV < hm < hIII,
where hV = −τ/ sinα, the flow is always upward on the free surface (type
IV, Figure 2(d)) but is downward within part of the rivulet. Finally, when
hm ≤ hV the effect of the prescribed shear stress dominates that of gravity
and the flow is upward throughout the rivulet (type V, Figure 2(e)). Figure
1 summarises when the different types of flow pattern occur.

5 Solutions for Prescribed τ and Varying α

Figure 3 shows a plot of hm as a function of α/π when τ = 1 and is typical of
all such plots for τ > 0. When Q̄ > 0 there is a single solution for hm for all
π/2 < α ≤ π and all solutions are of type I. Figure 4 shows a plot of hm as a
function of α/π when τ = −1 and is typical of all such plots for τ < 0. When
Q̄ ≥ 0 there is a single solution for hm (≥ hm0) for all π/2 < α ≤ π. However,
when Q̄ < 0 there can be no, one or two solution(s) for hm (< hm0). When
Qc < Q̄ < 0, where Qc = 9π51/4τ3/40 ' 1.0570τ3 (< 0), there is a thick and
a thin solution for all π/2 < α ≤ π. When Q̄ = Qc these solutions coincide
at α = αc = π − tan−1 2 ' 0.6476π and hm = hmc = hmin(αc) = −3τ/

√
5 '

−1.3416τ , while for Q̄ < Qc there are two disconnected branches of solutions,
each consisting of a thick and a thin solution which coincide on the curve
hm = hmin. Figure 4 also shows how the curves hm = hIII and hm = hV divide
the α–hm plane into regions in which different types of flow pattern occur.

6 Conclusions

We have obtained a complete description of the steady unidirectional flow of
a thin rivulet of a perfectly wetting fluid on an inclined substrate subject to
a prescribed uniform longitudinal shear stress at its free surface. In ongoing
work we are analysing the stability of such a rivulet to small perturbations and
investigating when it is energetically favourable for it to split into sub-rivulets.
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when τ = 1 for Q̄ = 1, . . . , 5. Note that
all solutions are of type I.
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