Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Asymptotic stability of a jump-diffusion equation and its numerical approximation

Chalmers, Graeme, D and Higham, Desmond J. (2008) Asymptotic stability of a jump-diffusion equation and its numerical approximation. SIAM Journal on Scientific Computing, 31 (2). pp. 1141-1155. ISSN 1064-8275

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Asymptotic linear stability is studied for stochastic dierential equations (SDEs) that incorporate Poisson-driven jumps and their numerical simulation using theta-method discretisations. The property is shown to have a simple explicit characterisation for the SDE, whereas for the discretisation a condition is found that is amenable to numerical evaluation. This allows us to evaluate the asymptotic stability behaviour of the methods. One surprising observation is that there exist problem parameters for which an explicit, forward Euler method has better stability properties than its trapezoidal and backward Euler counterparts. Other computational experiments indicate that all theta methods reproduce the correct asymptotic linear stability for suffciently small step sizes. By using a recent result of Appleby, Berkolaiko and Rodkina, we give a rigorous verication that both linear stability and instability are reproduced for small step sizes. This property is known not to hold for general, nonlinear problems.