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Abstract

The homotopy analysis method is applied to the short-pulse equation in order to
find an analytic approximation to the known exact solitary upright-loop solution. It
is demonstrated that the approximate solution agrees well with the exact solution.
This provides further evidence that the homotopy analysis method is a powerful
tool for finding excellent approximations to nonlinear solitary waves.
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1 Introduction

The solution of nonlinear problems by analytic techniques is often rather difficult.
Recently, a powerful analytic method for nonlinear problems, the so-called homo-
topy analysis method (HAM), has been developed by Liao [1]. The HAM has been
applied successfully to many nonlinear problems in engineering and science, such
as applications in heat transfer [2], solving the generalized Hirota–Satsuma coupled
KdV equation [3], in heat radiation [4], finding solitary-wave solutions for the fifth-
order KdV equation [5], finding the solutions of generalized Benjamin-Bona-Mahony
equation [6], finding the root of nonlinear equations [7], finding the solitary-wave
solutions for the Fitzhugh–Nagumo equation [8], boundary-layer flows over an im-
permeable stretched plate [9], unsteady boundary-layer flows over a stretching flat
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plate [10], exponentially decaying boundary layers [11], a nonlinear model of com-
bined convective and radiative cooling of a spherical body [12], and many other
problems (see [13–26], for example).

The short-pulse equation (SPE), namely

uxt = u +
1

6
(u3)xx, (1.1)

models the propagation of ultra-short pulses in silica optical fibers [27]. It has been
shown that the short-pulse equation has a Lax pair that is of the Wadati-Konno-
Ichikawa type [28,29]. Because of this result, it is not surprising that the SPE has a
loop-soliton solution. This solution was found in [30,31] together with several other
forms of solution.

The aim of this paper is to apply the HAM to the SPE in order to find an analytic
approximation to the solitary upright-loop solution which was given in exact form
by Parkes [31].

In Section 2 we give the exact solution for the solitary upright-loop solution. In
Section 3 we formulate the HAM for finding an approximate analytic solution for
the one-loop soliton wave. A brief conclusion is given in Section 4.

2 Exact solitary upright-loop solution

The SPE has several families of periodic travelling-wave solutions that may be
expressed in terms of Jacobian elliptic functions with nonlinearity parameter m

[31]. In the limit m → 1, a single upright or inverted loop-soliton is obtained [31,
Section 3.2]. Here we discuss the upright-loop solution.

In order to seek travelling-wave solutions of (1.1) we assume that u(x, t) := U(η),
where η := x + ct − x0, and c and x0 are constants. In this case (1.1) becomes

cUηη = U +
1

6
(U3)ηη. (2.1)

It is found that the solitary upright-loop solution is such that U is an implicit
function of η. This solution may be given in parametric form by

U = 2
√

c sechτ , η =
√

c (2 tanh τ − τ), (2.2)

where c > 0, and the parameter τ is defined by

2
√

c
dη

dτ
:= U2 − 2c. (2.3)
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3 The HAM for the upright-loop solitary wave

The loop solitary-wave solution to (2.1) for U as a function of η is multi-valued. An
approximation to this solution cannot be found directly by the HAM. In order to
proceed, we need to change the independent variable to τ so that the solitary-wave
solution is an smooth-hump wave for U as a function of τ . Hence we use (2.3) in
(2.1) to obtain

2c Uττ + U(U2 − 2c) = 0. (3.1)

It is convenient to introduce a new dependent variable w(τ) defined by

u(x, t) = U(τ) := a w(τ), (3.2)

where a is the amplitude, and w(τ) is a solitary smooth-hump wave of unit ampli-
tude such that w(0) = 1, w′(0) = 0, w → 0 as |τ | → ∞, and w(τ) = w(−τ). Here,
the prime denotes denotes differentiation with respect to τ . Substitution of U given
by (3.2) into Eq. (3.1) gives

2c w′′ + w (a2 w2 − 2c) = 0. (3.3)

Due to the assumed symmetry of the solitary wave, in the HAM we consider w(τ)
only for τ ≥ 0. Hence the appropriate boundary conditions on w for use in the
HAM are

w(0) = 1, w′(0) = 0, w(+∞) = 0. (3.4)

The aim is to use the HAM to find analytic approximations to w(τ) and a. Then
η(τ) can be found by integrating (2.3) to obtain

η(τ) =
a2

2
√

c

∫ τ

0

w2(τ̃)dτ̃ −√
c τ. (3.5)

From w(τ) and η(τ) we can find an approximation to the solitary loop wave given
by w as an implicit function of η. The aim is to show that this approximation and
the approximation to a are in good agreement with the known exact results. For
simplicity, from here on we set c = 1.

According to Eq. (3.3) and the boundary conditions (3.4), the solitary-wave solution
can be expressed in the form

w(τ) =
+∞
∑

m=1

dme−mτ , (3.6)

where the dm (m = 1, 2, . . .) are coefficients to be determined. According to the
rule of solution expression denoted by (3.6) and the boundary conditions (3.4), it
is natural to choose

w0(τ) = 2e−τ − e−2τ (3.7)
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as the initial approximation to w(τ).

We define an auxiliary linear operator L by

L[φ(τ ; p)] =

(

∂2

∂τ 2
− 1

)

φ(τ ; p), (3.8)

with the property

L[C1e
−τ + C2e

τ ] = 0, (3.9)

where C1 and C2 are constants. This choice of L is motivated by (3.6) and the later
requirement that (3.16) should contain only one non-zero constant, namely C1.

From (3.3) we define a nonlinear operator

N [φ(τ ; p), A(p)] := 2

(

∂2φ

∂τ 2

)

+ φ
(

A2(p)φ2 − 2
)

, (3.10)

and then construct the homotopy

H[φ(τ ; p), A(p)] = (1 − p)L[φ(τ ; p) − w0(τ)] − h̄pN [φ(τ ; p), A(p)], (3.11)

where h̄ is a nonzero auxiliary parameter. Setting H[φ(τ ; p), A(p)] = 0, we have the
zero-order deformation equation

(1 − p)L[φ(τ ; p) − w0(τ)] = h̄pN [φ(τ ; p), A(p)], (3.12)

subject to the boundary conditions

φ(0; p) = 1,
∂φ(τ ; p)

∂τ

∣

∣

∣

∣

τ=0

= 0, φ(+∞; p) = 0, (3.13)

where p ∈ [0, 1] is an embedding parameter. When the parameter p increases from
0 to 1, the solution φ(τ ; p) varies from w0(τ) to w(τ), and A(p) varies from a0 to
a, where a0 is the initial value of the wave amplitude. If this continuous variation
is smooth enough, the Maclaurin’s series with respect to p can be constructed for
φ(τ ; p) and A(p), and further, if these two series are convergent at p = 1, we have

w(τ) = w0(τ) +
+∞
∑

m=1

wm(τ), a = a0 +
+∞
∑

m=1

am,

where

wm(τ) =
1

m!

∂mφ(τ ; p)

∂pm

∣

∣

∣

∣

p=0

, am =
1

m!

∂mA(p)

∂pm

∣

∣

∣

∣

p=0

.

For brevity, we define the vectors

−→w k = {w0, w1, . . . , wk}, −→a k = {a0, a1, . . . , ak}.
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Differentiating Eqs. (3.12) and (3.13) m times with respect to p, then setting p = 0,
and finally dividing by m! , we obtain the mth-order deformation equation

L[wm(τ) − χmwm−1(τ)] = h̄Rm(−→w m−1,
−→a m−1), (m = 1, 2, 3, . . .) (3.14)

subject to the boundary conditions

wm(0) = 0, w′

m(0) = 0, wm(∞) = 0, (3.15)

where Rm is defined as

Rm = 2w′′′

m−1 +
m−1
∑

n=0





m−n−1
∑

j=0

(ajam−n−j−1)
n
∑

i=0

(

wn−i

i
∑

l=0

wlwi−l

)



− 2wm−1.

The general solution of Eq. (3.14) is

wm(τ) = ŵm(τ) + C1e
−τ + C2e

τ , (3.16)

where C1 and C2 are constants and ŵm(τ) is a particular solution of Eq. (3.14).
Using (3.6), we have C2 = 0. The unknowns C1 and am−1 are governed by

ŵm(0) + C1 = 0, ŵ′

m(0) − C1 = 0.

Thus, the unknown am−1 is obtained by solving the linear algebraic equation

ŵm(0) + ŵ′

m(0) = 0,

and thereafter C1 is given by
C1 = −ŵm(0). (3.17)

In this way, we derive wm(τ) and am−1 for m = 1, 2, 3, . . ., successively. At the
Mth-order approximation, we have the analytic solution of Eq. (3.3), namely

w(τ) ≈ WM(τ) =
M
∑

m=0

wm(τ), a ≈ AM =
M
∑

m=0

am. (3.18)

The auxiliary parameter h̄ can be employed to adjust the convergence region of
the series (3.18) in the homotopy analysis solution. By means of the so-called h̄-
curve, it is straightforward to choose an appropriate range for h̄ which ensures the
convergence of the solution series. As pointed out by Liao [1], the appropriate region
for h̄ is a horizontal line segment.

Our solution series contain the auxiliary parameter h̄. We can choose an appropriate
value of h̄ to ensure that the two solution series converge. We can investigate the
influence of h̄ on the convergence of a by plotting the curve of a versus h̄, as shown
in Fig. 1. Clearly, a ≈ 2 which agrees with the expected value 2

√
c with c = 1.

Generally, it is found that as long as the series solution for the amplitude a is
convergent, the corresponding the series solution for w(τ) is also convergent. For
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instance, our analytic solution converges, as shown by the residual error in Fig. 2.
The series solution for the amplitude is convergent, and the corresponding series
for w(τ) and the approximation for the upright loop U(η) are also convergent. For
instance, when h̄ = −0.6, our analytic solution converges, as shown in Fig. 3 and
Fig. 4.
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Fig. 1: The curves of the wave amplitude a versus h̄ for the 10th-order
approximation.
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Fig. 2: The residual error for Eq. (3.3) for the 10th-order approximation. Solid
curve: h̄ = −0.7; dotted curve: h̄ = −0.6; dashed curve: h̄ = −0.5.

The value of the amplitude is shown in Table 1. The so-called homotopy-Padé
technique (see [1]) is employed, which greatly accelerates the convergence. Clearly,
the amplitude converges to the exact value 2.

6



-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

w

τ

Fig. 3: The analytic approximation for w(τ) when h̄ = −0.6 and the exact solution
w(τ) = sech(τ). Solid curve: exact solution; symbols: 10th-order approximation.
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Fig. 4: The analytic approximation for U(η) when h̄ = −0.6 and the exact
solution (2.2). Solid curve: exact solution; symbols: 10th-order approximation.

Table 1: Results for [m, m] Homotopy-Padé approach

Order of approximation [m, m] a

2 [1,1] 2.00512

4 [2,2] 2.00015

6 [3,3] 2.00001

8 [4,4] 2.00000

10 [5,5] 2.00000
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4 Conclusions

We have applied the homotopy analysis method (HAM) to the short-pulse equation
(1.1) to obtain an analytic approximation to the known upright-loop solitary-wave
solution as given in [31]. The HAM gives excellent agreement with the known so-
lution. The HAM provides us with a convenient way to control the convergence of
approximation series; this is a fundamental qualitative difference between the HAM
and other methods for finding approximate solutions. The example in this paper
gives further confirmation of the power of the HAM to solve complicated nonlinear
problems.
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