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Abstract

In this work, we consider an alternative approach for the measurement of adsorption from the 

liquid phase.  Consider a mixture consisting of a non-adsorbed component (B) and an 

adsorbed component (A) present at some low concentration.  Initially, a feed of component B 

only flows through a column packed with an adsorbent.  Then, the feed is switched to the 

mixture of A and B.  As soon as the mixture enters the column, there will be a reduction in the 

outlet flow rate as component A leaves the liquid phase and passes into the adsorbed phase.  

There are three stages to this work.  The first is to develop overall and component balances to 

show how the amount adsorbed of component A can be determined from the variation in the 

column outlet flow rate.  The second is to determine the actual variation in the column outlet 

flow rate for both plug flow and axial-dispersed plug flow.  The final stage is to consider the 

suitability of a gravity-fed system to deliver the feed to the column.  An analysis of the results 

shows that the experimental arrangement should be able to accurately monitor adsorption 

from the liquid phase where the mass fraction of the solute is of the order of 1%: the limiting 

experimental factor is how constant the volumetric flow rate of the liquid feed can be 

maintained.  

mailto:mark.heslop@strath.ac.uk
http://www.editorialmanager.com/adso/download.aspx?id=9117&guid=7dd2f493-0ad0-4aaf-a2a9-0cb57eca008a&scheme=1
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Introduction

In recent years, there has been an increase in the number of applications, publications and 

patents for adsorption in the liquid phase.  This is in part due to the increasing number of 

purification applications, where the requirement is to remove a low concentration of a 

component which is capable of adsorption.  One application is the removal of water from

organic solvents.  Lau et al. (2004) used a packed column of spherical beads of 3A zeolite to 

dry an ethanol solution containing 3.2 % of water.  The authors used titration to determine the 

concentration of water in ethanol and concluded that the application of oscillatory flow 

resulted in improved column performance.  Environmental applications include the removal 

of phenol from water (Roostaei and Tezel, 2004) and naphthalene from water (Chang et al., 

2004).  In the former, the starting solution was phenol in water at a concentration of 200 ppm.

For the design of such purification and separation processes, a key parameter is the adsorption 

isotherm for a particular solute and material.  This is conveniently written as

)(cfq  (1)

where q is the adsorbed-phase concentration (for which convenient units are say mg/g) and c

is the concentration of the solute in the liquid phase (for which convenient units are say g/L).  

The various experimental methods are covered in a recent review by Seidel-Morgenstern 

(2004).  These can be classified into two broad categories: static and dynamic.  In the former, 

an amount of adsorbent is contacted with a known volume (V) of solution with an initial 

concentration (cstart) of the solute.  The concentration is then monitored until the equilibrium 

value (c0) is attained.  A material balance then gives the amount adsorbed 

)( 0startads ccVm  (2)

assuming that, initially, the adsorbent is clean of the adsorbed component.  The value of mads

is then used to give the point on the isotherm, that is q(c0).  There is a modification to this 
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method which involves regenerating the adsorbent with a flow of eluent.  This is continued 

until the concentration of the solute in the eluent reduces to zero.  The total volume of eluent 

is collected, mixed and analysed to give an “average” solute concentration.  This approach is a 

double-check on the amount adsorbed: assuming that regeneration is complete, the material 

balance should then give the same value of mads determined from Equation (1).  The whole 

procedure is then repeated with a different starting concentration (cstart) which gives a different 

final (or equilibrium) concentration (c0).  There are two drawbacks with the static approach: 

the time and material requirements can be prohibitive, and the equilibrium concentration (c0) 

is the value at the end of the experiment rather that at the start.

For the dynamic category, the adsorbent is contained as a packed column with a solution 

containing the solute as a feed.  Then, at time zero, some change is made to the feed 

concentration of the solute.  Information on the adsorption isotherm is then obtained from the 

variation with time of the solute concentration in the outlet flow – that is, c(t).  This “change” 

is conveniently obtained by increasing the feed concentration from zero to a value of c0 – the 

variation of c(t) would then be the breakthrough curve.  Alternatively, the change might be to 

reduce the feed concentration from c0 to zero – this variation of c(t) is sometimes known as 

the washout curve.  The use of a step-change in concentration is termed frontal analysis (FA), 

for which the equilibrium value of q is obtained from

W

VcttccQ

q






 0

00 d)]([

(3)

where V is the total empty space in the system between the valve and detector, Q is the 

volumetric flow rate and W is the mass of adsorbent.  The selection of the correct value of V is 

especially important when the solute is not strongly adsorbed and the integral is not large 

(Gritti and Guiochon, 2005a).  Furthermore, the value of Q should be maintained as constant 
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as possible (Gritti and Guiochon, 2005b): an increase in flow rate gives a slight increase in the 

amount adsorbed because of the increase in column pressure.  An advantage of FA is that it is 

based on a material balance and is independent of any mass-transfer limitations or axial 

dispersion.  

The perturbation method is a variation on the FA method.  This involves setting the feed 

concentration to a particular value (c0), and then adding “small” pulses of increasing size.  

From this set of results, the isotherm gradient is determined at the value of c0.  The whole 

procedure is then repeated at various values of c0, starting at zero.  The complete isotherm is 

finally obtained by integration of the set of gradients.

Consider now an “efficient” adsorption column: this is defined as a column in which the mass 

transfer is rapid and axial dispersion can be ignored.  Consider now a pulse injection of the 

adsorbed component: this is obtained by increasing the inlet concentration of the solute from 

zero to a finite value and then back to zero.  In this case, the passage of the pulse through the 

column will consist of a “sharp” front and a “dispersive” front.  The degree of dispersion is 

determined by the curvature of the isotherm; each point (c) on the isotherm will travel at a 

speed determined by the isotherm gradient.  This is termed elution by characteristic point 

(ECP), the advantage of which is that a significant part of the isotherm can be determined

from a single experiment.

The method proposed in this paper is distinctive in that our intention is to measure the 

adsorption isotherm by monitoring the variation in the volumetric flow rate leaving the 

column rather than by monitoring the solute concentration.  There are a number of reasons 

why we are proposing such a method.  First, to date all previous work in the groups at 

Strathclyde, Loughborough and Teesside has been in the gas phase. This is therefore a logical 

extension to the liquid phase.  Second, our expertise is a method to measure small changes in 

flow rate and the application to material balances in various types of system.  The method can 
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be summarised by considering that a flow resistance is placed downstream of the adsorption 

column.  Assuming that the flow regime is laminar, the pressure drop (P) is related to the 

volumetric flow rate leaving the adsorption column (Q) by the Hagen-Poiseuille equation 

QkP  (4)

where  is the viscosity and k is a tubing constant.  It is helpful at this stage to consider an 

order of magnitude comparison between gas and liquid systems.  Consider the adsorption of a 

component (solute) present at say 1% in a non-adsorbed mobile phase: in each case, there will 

be a reduction in the column outlet flow rate as the component passes leaves the mobile phase 

and passes into the adsorbed phase.  The volume of a gas is typically three orders of 

magnitude greater than a liquid, however the viscosity of a liquid is typically two orders of 

magnitude greater than a gas.  This would suggest that the application of Equation (4) to the 

measurement of changes in liquid flow rate due to adsorption might only be an order of 

magnitude less sensitive than for gases – which might be challenging – but is certainly worthy 

of further investigation.

The implication of trying to monitor adsorption from the column outlet flow rate in a liquid 

system is that the volumetric flow rate of the feed should be kept as constant as possible, 

especially where the solute is present at low concentrations.  Gritti and Guiochon (2004) 

carried out an HPLC investigation on the adsorption of phenol using a mixture of water and 

methanol as the mobile phase.  They found that the fluctuation in the pumping system was 

about 0.1%, for a feed flow rate of 1 mL/min.  In our case, by not operating under pressure we 

have the option of delivering the feed flow using an alternative method.  The obvious solution 

might be some sort of pump capable of operating at low flow rates: that is, the syringe pump 

or piston pump.  However, there are a number of potential problems with such a pump.  First 

we are limited by the amount of liquid placed initially in the syringe, which could pose a 

problem if we require the flexibility of operating at higher flow rates and longer experimental 
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times.  Second, it is essentially a mechanical device in which the plunger is pushed in at a 

constant rate by a gear arrangement.   Third, even if the gear arrangement is perfect, it 

requires a perfect cylinder to deliver a constant flow: this is a uniform diameter across the 

length of the cylinder.  

There are three objectives to this research.

1. The first objective is to carry out a material balance on the column and to illustrate how 

the amount adsorbed in an experiment can be obtained from the variation in the volumetric 

flow rate leaving the column and known physical properties.  Krige and Pretorius (1965) 

presented an analysis for the flow rate changes that occur due to the adsorption of a solute and 

specifically stated that the analysis could also be applied to the liquid phase.  However, we 

can find no record in the literature of any investigation of flow-rate changes in the liquid 

phase.  So, this is very much a pioneering – and challenging – investigation.

2. The second objective is to model the adsorption system and predict the actual variation 

in column outlet flow rate as the composition front enters, travels through and leaves the 

column.  The shape of the composition front monitored by a detector at the outlet of the 

column is well-established in the literature for all types of adsorption system – plug flow, 

dispersed plug-flow.  However, there is no such literature for the variation in column flow 

rate.  We only know that the column outlet flow rate will drop as the front enters the column, 

and return to the original baseline as the front leaves the column: this would give, perhaps, a 

bath-shaped profile.

3. The third objective is to assess a possible experimental arrangement capable of detecting 

the changes in flow rate due to adsorption.  Here, we consider a gravity-driven system in 

which a constant head of liquid is maintained across an arrangement of flow resistances.  

Much of the literature involves the use of gravity to drive liquid flows through a flow 

resistance in order to measure the viscosity.  However, the design is such that the liquid level 
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and the flow rate are not constant but decrease with time, for example in the determination of 

the viscosity of water at different temperatures (Digilov and Reiner, 2007).  Our experimental 

arrangement will be a variation on the gravity-fed system in which the volumetric flow rate 

should remain constant during the experiment.  There are three reasons for this choice.  First, 

it is a research area for which there is limited published work.  Second, it is a low-cost and 

robust arrangement that can be readily and easily constructed from available equipment.  

Third, by monitoring the pressure signal we will know instantly whether the column is 

saturated and the outlet flow is indeed constant.             

Theory of new method

Overall material balance on column

Consider the schematic experimental arrangement shown in Figure 1 which consists of an 

adsorption column, a length of empty tubing of zero resistance and a length of resistance

tubing.  For the sake of simplicity, we consider a binary system of components A and B.  

Component B is non-adsorbed  –  and is the equivalent of the “carrier” in gas chromatography 

– while component A is capable of adsorption.  Initially, the flow through the system is pure

component B at a fixed volumetric value of Q(0).  Then, a step change is made in the 

composition of the feed such that the mass fraction of component A takes a value xA.  Figure 1 

shows the progress of the composition front through the system.  The basic material balance is 

given by

in = out + accumulation

In a time interval dt, the total mass entering the system is equal to the total mass leaving plus 

the accumulation terms in the adsorbed and liquid phases.  This can be written as 

liqBliqAadsAfeed )d()d()d(d)()(d)0( mmmtttQtQ  (5)
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where feed is the density of the feed mixture and t is the density of the outlet at time t.  

This is initially B (pure-component B) until breakthrough of the concentration front.   Note 

that the presence of the delay volume ensures that for the duration of the experiment, pure 

component B is located in the measurement resistance.  This can also be written as

liqBliqAadsAfeedfeed )d()d()d(d])([)(d)]()0([ mmmtttQttQQ  (6)

The second term on the left-hand side is equal to the two accumulation terms in the liquid 

phase.  This allows Equation (6) to be simplified to

adsAfeed )d(d)]()0([ mttQQ  (7)

which can then be integrated to obtain the amount adsorbed over an experiment.  





0

feedadsA d])()0([)( ttQQm (8)

The value of the integral can be simply determined from the variation of the outlet flow rate 

with time.  The use of infinity as a limit of integration requires further explanation: this simply 

means the time taken to reach the new steady state in the column.  The advantage of this 

continuous monitoring is to ensure that the new steady state is definitely attained in the 

column.  Consider that the first experiment is carried out with a mass fraction of component A 

of 0.01.  The whole procedure would then be repeated with mass fractions of 0.02, 0.03 and so 

on up to say 0.1.  Note that the value of feed would be different for each mixture, although 

this type of information is readily available from the literature.  An important consideration at 

this stage is the heat of reaction and the implications for Equation (8).  Assuming the system 

temperature can return to the starting value before the composition front leaves the delay 

volume, this should ensure that the material balance is not affected by any temporary increase 

or reduction in temperature.
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We now return to the evaluation of the integral, which will have the dimensions of volume.  

This could be evaluated with a direct-reading meter, but for precise work this is best achieved 

by measuring the pressure drop across the flow resistance indicated in Figure 1.  Writing 

Equation (4) for the initial situation

)0()0( BF32 QkPP  (9)

and then for the situation at any time t, we have

)()( BF32 tQkPtP  (10)

Equations (9) and (10) can be substituted into (8) to give










0

22

BF

feed
adsA d])()0([)( ttPP

k
m (11)

Therefore, the amount adsorbed during the experiment is determined by monitoring the 

variation of the pressure P2(t) with time, the density of the mixture, the viscosity of 

component B and a constant dependent on the dimensions of the tube.

Material balance on component A

The material balance for a non-reaction system is given by

in = out + accumulation

In a time interval dt, the amount of component A entering the system is equal to the total mass 

leaving plus the accumulation terms in the adsorbed and liquid phases.  This can be written as

liqAadsA0 )d()d(d),()(d)0( mmttLctQtcQ  (12)

where c(L,t) is the liquid-phase concentration of component A leaving the column.  If we 

consider a time before the start of breakthrough of component A, then the first term on the 

right-hand side becomes zero, and we can rearrange to a more convenient form
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0

liqAadsA )0(
d

)d(

d

)d(
cQ

t

m

t

m
 (13)

This means that the sum of the two differential terms must be zero.  We can also rearrange 

Equation (7) to give the differential balance on the total amount adsorbed in the column

feed
adsA )]()0([

d

)d(
 tQQ

t

m
(14)

We assume equilibrium between the amount of A in both phases, in which case the ratio of 

the two differential terms is equal to a constant: this means that before the start of 

breakthrough of component A, value of Q(t) must remain at a constant value.  This is an 

important finding, since it helps to determine the variation of the column outlet flow rate. 

Relation of variation in flow rate to concentration front

It is helpful to start by considering Figure 2 which shows the passage of a concentration front 

through an adsorption column.  This is a special case in which the shape and width of the front 

remains constant.  In practical terms, such a concentration front might be obtained by adding a 

small flow of the adsorbed component A into a non-adsorbed liquid, and allowing the flow of 

component A to increase linearly with time until the required composition.  We know from 

the previous sub-section that while the concentration front is contained entirely within the 

column, the column outlet flow rate will remain at a constant value.  For the sake of 

convenience, this will be termed the plateau value (Qplat).  However, as soon as the front 

reaches the end of the column – this is shown as the fifth series (dotted line) in Figure 2 – the 

column outlet flow rate will start to increase.  This is the start of the breakthrough which is 

complete by the sixth series.  By this time, the outlet flow rate will have returned to the 

original value of Q(0).  

We are also interested to determine the actual variation in the column outlet flow rate – that is 

Q(t) – at breakthrough of the concentration front.  This will be important in the next section, 
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as we will be interested to determine the variation in Q(t) for a number of concentration-front 

shapes.  From intuition and observation, we know that the variation of c(t) and Q(t) tend to 

occur in tandem.  During breakthrough, the value of Q(t) is greater than Qplat because of 

component A leaving the adsorbed phase and entering the liquid phase.  This means that we 

can state that

)()()( plat tctQQtQ  (15)

This can be written at any time t, and at the completion of breakthrough.  The two equations 

are then combined to give














)(

)0(

)0(

)()(

plat

plat

0 tQ

Q

QQ

QtQ

c

tc
(16)

This is important since it indicates that the shape of the concentration front is almost the same 

as the shape of the variation of Q(t) during breakthrough. 

The ideal variation in flow rate

Before the modelling section, it is first helpful to examine the “ideal” variation of flow rate 

leaving the column.  In order to streamline explanations, it is helpful to employ a parameter 

(r), which is the ratio of the flow rate leaving the column at time t, to the initial value:

)0(

)(

Q

tQ
r  (17)

We now consider the properties of the feed.  Consider first a batch system of components A 

and B.  Assuming these components form an ideal mixture, the volume of the mixture (V) can 

be written in terms of the specific volumes and masses of the two components by 

0
BB

0
AA vmvmV  (18)
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where the superscript 0 refers to the property of the pure liquid at the temperature and 

pressure of the system.  

Consider now a situation in which component A is removed from the mixture, as would be in 

the case of contact with an adsorbent of high affinity.  There will obviously be a reduction in 

the total volume, and the fractional change is given by:

0
BB

0
AA

0
AA

vxvx

vx

V

V







(19)

which is obtained by simply dividing top and bottom by the total mass.

This means that the ideal variation in flow rate from the adsorption column would be:

)(1)0(1)0(1 retnretn0
BB

0
AA

0
AA ttrtt

vxvx

vx
rtr 


 (20)

where tretn is the retention time for the (sharp) composition front.  Assuming that the specific 

volumes of the two liquids are comparable, for xA = 0.01 there will be approximately a 1% 

reduction in the volumetric flow rate leaving the column as the composition front passes 

through the column.  In order to obtain this “ideal” profile, we have assumed the 

concentration profile is a sharp front (instantaneous equilibrium and no axial dispersion) and 

that component A is strongly adsorbed (all of component A passes into the adsorbed phase).  

This ideal profile has limitations, but it does provide a useful comparison for the modelling.

Modelling of variation of column outlet flow rate with time

Influence of shape of concentration front

From the previous section, the column outlet flow rate (Q(t)) will start at the baseline value 

(Q(0)), then reduce to the plateau value (Qplat) as the concentration front passes through the 

column, and finally return to the baseline value.  The variation in the outlet concentration
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(c(t)), however, will have a different shape: “nothing” will be apparent until the concentration

front leaves the column, in which case there will be a “sweep” or sharp transition to the 

concentration of component A in the feed.  In this section, the objective is to model the actual 

variation in Q(t) for a variety of concentration front shapes or variation.  

For a single adsorbable component, the material balance (Seidel-Morgenstern, 2004) is 

written as

2

2)(1

z

c
D

z

c
u

t

cq

t

c
L


















(21)

where u is the linear velocity,  is the voidage in the column and z is the axial position along 

the column.  The parameter q is the adsorbed-phase concentration of component A.  The 

implication of the term (c) next to q allows the equilibrium adsorbed-phase concentration to 

be used: that is, the isotherm.  The advantage of this approach is that the contributions to band 

broadening (axial dispersion and slow mass transfer processes) are all contained within a 

single apparent dispersion parameter (DL).  For the sake of convenience, the adsorption 

equilibrium is represented by the Langmuir isotherm

bc

ac
q




1
(22)

where a can be considered a type of Henry coefficient and b is the Langmuir parameter.  As c

tends to zero, the isotherm becomes linear.  The isotherm gradient is given by

2)1(d

d

bc

a

c

q


 (23)

As the value of c tends to zero, the isotherm tends to a linear form with a equivalent to the 

Henry constant.   Here, we consider the section of isotherm to be linear with gradient equal to 

a.  Equation (21) can be solved with the relevant boundary conditions: for an adsorption 

experiment, initially the column is completely free of the adsorbed component (A), and then 
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at t = 0, the concentration of component A undergoes a step change to c0.  The solution is then 

given by [c(z,t); q(z,t)] which shows how the concentration of component A varies with time 

at any location (axial position z) in the column.  For a composition detector, located at the end 

of the column, the response is given by c(L,t), where L is the length of the column.  

Simplified solution of material balance

We now return to the variation of the outlet flow rate from the column.  In the previous 

section, an expression was given for r assuming that component A is very strongly adsorbed: 

equivalent to assuming that the value of the parameter a in Equation (22) is very large.  In 

reality, we take account of the isotherm gradient and column voidage, and so the parameter r

will depend on the fraction of the adsorbed component that enters the adsorbed phase:

)(1)0(
)1(

)1(
1)0(1 retnretn0

BB
0
AA

0
AA ttrtt

vxvx

vx

a

a
rtr 












 (24)

It is convenient to plot the profiles in terms of a dimensionless time (t*), which is defined by

the time divided by the simple residence time (tvoid).  Figure 3 shows the idealised variations 

in the column outlet flow rate for a mole/mass fraction (xA) of 0.06 and a voidage () of 0.75.  

The two series correspond to different isotherm gradients: a = 3 and a = 6.

Equilibrium-dispersion model

From Equation (8), the amount adsorbed (value of q) depends only on the area enclosed by the 

variation in flow rate, and is independent of any band-broadening effects.  This means that if 

axial dispersion (a finite value of DL) is imposed on one of the profiles in Figure 3, the 

resulting profile will simply have a broader front as the concentration front leaves the column

– but, the area formed by the variation Q(t) bound by a horizontal line at Q(0) will remain 

constant and independent of the value of DL.
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Equation (21) can be solved to give an analytical solution (Levenspiel and Bischoff, 1963).  

This is shown modified so that the dimensionless time is based on the simple residence time 

in the column.  Furthermore, this is the asymptotic form and assumes instantaneous 

equilibrium and a long column.
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t
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(25)

where ND is the dispersion number which is equal to (DL/uz).  

Figure 4 shows the variation in the column outlet flow rate for two values of the dispersion 

number: 0.01 for the solid line and 0.05 for the dotted line.  This should be compared with the 

solid line of Figure 3, which corresponds to a zero dispersion number.  In each of the cases 

shown in Figures 3 and 4, the concentration front entering the column is sharp; then, the 

effects of axial dispersion will cause the width of the concentration front to increase as it 

travels through the column.   

Experimental arrangement

From the previous section, adsorption from the liquid phase will cause a reduction in the 

outlet flow rate from the column, and that this reduction is related to a number of factors.  

This means that there are two important implications for the design of an experimental 

arrangement to measure adsorption from the liquid phase.  

1. A requirement of the material balance is that the flow rate of the feed (Q(0)) should be 

maintained as constant as possible.  This will ultimately determine the range of applications of 

the method.  For example, it will be impossible to monitor adsorption from the liquid phase 

where component A is present at a concentration of 100 ppm if the flow rate of the feed can 

only be maintained to ± 5%.  
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2. We also require a sensitive method of measuring these small changes in flow rate.  We 

have alluded to this previously by considering that the variation in the volumetric flow rate 

leaving the column can be inferred from the pressure drop across a length of resistance tubing.

The experimental arrangement is intended only to simulate the change in the outlet flow from 

the baseline value of Q(0) to the plateau value of Qplat.  This will then be compared to the 

baseline variation in the value of Q(0) (which we hope will remain as constant as possible), 

from which an assessment of the sensitivity of the arrangement can be inferred.         

For this purpose we have used the gravity-driven system shown in Figure 5.  There are two 

ways of ensuring that the flow rate remains constant in a gravity-driven system.  First, we 

could employ a very large tank with a large cross-section and a large resistance to give a low 

flow rate so that the liquid level remains essentially constant during the experiment.  

However, there may be problems with evaporation from the liquid surface, especially for a 

volatile mobile phase.  The alternative is to employ a weir system, where a flow rate of liquid 

higher than the system flow is directed into a beaker, and the excess flows over the side of the 

container or through a weir.  We adopted the latter approach for this investigation.    

The area surrounded by the dashed line is intended to represent the variation in column outlet 

flow rate that occurs in a liquid adsorption system when the concentration front is travelling 

though the column.  Initially, valve V1 is open and valve V2 is closed and this represents the 

baseline state of the system.  Then valve V2 is open to increase the flow rate through the 

measuring resistance (kC).  This would then represent what might happen during a desorption 

experiment, where the adsorbed component leaves the adsorbed phase and passes into the 

liquid phase.  For example, in Figure 3 this would correspond to the change in outlet flow rate 

from the plateau value (Qplat) to the baseline value (Q(0)).  

Because we only had a fixed amount of ethanol, it was necessary to recycle the flows back to 

the tank.  The weir was simply a large hole in the side of the beaker with a large-diameter 
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length of tubing to direct the flow to the return beaker.  The liquid level in the supply beaker 

was approximately 30 cm above the bench surface.  The “baseline” ethanol flow rate was 

determined by the flow resistances kA and kC.  These are different lengths of stainless-steel 

tubing with an internal diameter of about 1 mm.  The length of resistance kA was about 50 cm 

and the length of resistance kC was about 3 cm meaning that the ratio of kA to kC was close to 

20.  Resistance kB had a length of about 20 cm but a much smaller bore (about 0.5 mm), 

meaning that the value of kB was perhaps an order of magnitude greater than kA.  The two 

shut-off valves (V1 and V2) were Whitey ball-valves.  The volumetric flow rate of ethanol 

was measured by directing the flow from resistance C into a measuring cylinder.  

It could be argued that since this is a closed system, there should be no need to have the weir, 

since the liquid level in the tank should be constant.  However, in a preliminary experimental 

arrangement without the weir, close inspection of the liquid level in the tank indicated that the 

liquid level might fluctuate in a typical hour time-scale by about 1 mm.  This corresponds to a 

change in pressure head of 0.1 mbar.  The reasons for this may be evaporation of ethanol and 

any slight changes in the rate at which liquid is pumped back into the supply beaker and the 

time for which the ethanol flow rate is measured by directing the flow away from the return 

beaker.  The pressure drop across resistance kc was measured with a Validyne 55 pressure 

transmitter with a ± 14 mbar range corresponding to an output of ± 5000 mV.  The signal 

voltage was measured every 1 second and recorded using a Pico data acquisition system.                     

Experimental procedure and recorded pressure transmitter data

1. The first stage was to prime the equipment.  This was achieved by opening the two shut-

off valves (V1 and V2) and switching on the pump, allowing the ethanol to flow through the 

whole system.  Then valve V2 was closed and for the first experiment, the baseline value of 

P2(t) was monitored for 400 seconds.  This was essential, as the likely applications (or 

limitations) of this equipment are likely to be determined by how constant we can maintain 
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the baseline voltage and the main flow rate.  This is shown in Figure 6.  It can be seen that the 

signal drifts up by 0.3 mV (0.00084 mbar) in the first 200 seconds, and then down by 0.2 mV

(0.00056 mbar) in the remaining 200 seconds.  The baseline flow rate has a value Q1.    

2. For the second experiment, valve V2 was opened to allow ethanol to flow through 

resistance kB and so increase the ethanol flow rate through the measuring resistance to a value 

Q2.  The valve was opened at a time of around 440 seconds.  It can be seen that there is a 

steady increase in P2, from 184.57 mV to 202.06 mV: a change of 17.49 mV (0.049 mbar).  

The new steady-state took about 100 seconds to be achieved.  Then, valve V2 was closed to 

stop ethanol flowing through resistance kB and into the supply beaker.  The valve was closed 

at a time of around 620 seconds.  As expected, this leads to a reduction in the value of P2 from 

202.02 mV to 184.46 mV: a change of 17.56 mV (0.049 mbar).  The complete pressure record 

for P2 is shown in Figure 7, and it can be seen that there is a net drift by only 0.11 mV (0.0003 

mbar), which is encouraging considering the experimental time.  

Calculation of equipment sensitivity for potential adsorption experiments

For a favourable experimental design we require that the drifting should be as low as possible 

in Figure 6 and that the step-change in Figure 7 should be as large as possible. Consider the 

step-change experiment in which the initial flow rate is Q1 and the final flow rate is Q2.  It is 

appropriate to be able to quantify how well the experimental arrangement might perform for 

adsorption experiments and for convenience the parameter of performance () is defined by












 1

(mV))step(][ǻ
(mV)(drift)][

1

2

2

2

Q

Q

P

P
(26)

Note that for a successful experimental arrangement, the value of  should be as small as 

possible.  Let us consider a notional example.  Consider that the drift over a particular time 

spell is 0.01 mV, and that the step change is 100 mV for a fractional increase in flow rate of 
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1%.  This would give a value of 10
–6

 which would be very favourable, since it would be 

capable of measuring tiny flow rate changes corresponding to systems where the adsorbate is 

present at low concentrations.  As we shall see, the actual value of  for the current 

experimental arrangement is not as favourable.  We now proceed to obtain an expression for 

in terms of the various experimental parameters.          

The first stage is to identify and quantify the possible sources of drifting in the baseline shown 

in Figure 6.  Assuming laminar flow through both resistances kD and kF, we can write

gh
kk

k
PP 





FFDD

FF
32 (27)

From Equation (27), we can identify three possible reasons to explain why the variation 

shown in Figure 6 is not a horizontal line.  First, there may be variation in the level of ethanol 

in the tank.  The weir is designed to maintain this level constant, but this may not be perfect.  

Second, there may be changes in the overall liquid temperature which will change the density.  

Third, over the course of the experiment, the temperatures in the two resistances may change 

by different amounts.  Consider that the ethanol in resistance kF changes by 0.1ºC but the 

ethanol in resistance kD stays at the same value.  This effect is included because the liquid 

viscosity is a strong function of temperature (Yaws, 1999).  From differentiation, these three 

sources of drifting (level, density and viscosity) are quantified as         
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The value of the drift term in Equation (26) is then simply the sum of these three terms.    The 

next stage is to simplify the term in Equation (26) involving the ratio of Q2 to Q1.  The 

“before” state of the system (before valve V2 is open) can be written as

1FF32 QkPP  (31)

1FFDD31 )( QkkPP  (32)

and the “after” state can be written as

2FF322 ))step(( QkPPP  (33)

2FF32DD31 )( QkQQkPP  (34)

Equations (31) to (34) can be solved to eliminate Q3 and give an expression for the ratio of the 

“initial” and “final” ethanol flow rates.  This can be simplified by assuming that the values of 

A and B are the same:

1

D

E

F

E

F

D

1

2 11












k

k

k

k

k

k

Q

Q
(35)

Our measurements indicate that opening the valve V2 increases the volumetric flow rate by 

about 15%.  We know that the ratio of kD to kF is approximately 20 and so from Equation (35) 

the ratio of kE to kD is about 6.  This is in accordance with our expectations: the resistance of a 

length of tubing is inversely proportional to the internal diameter to the fourth power (Coulson 

and Richardson, 1999).  The form of Equation (35) can be checked by intuition.  As the value 

of kE is increased, the ratio of the two flow rates tends to unity: opening the valve V2 will 

have zero effect on the flow rate through resistance F.

We return to the final term in Equation (26).  Subtracting Equation (31) from (33) we obtain:

)()step( 12FF2 QQkP  (36)
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and then using Equation (35) we have the useful form
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Once again, Equation (37) can be checked to confirm what we expect from intuition: a zero 

value of kF will give an expected zero step-change in P2.  Furthermore, an infinite value of kE

will make zero difference to the flow rate and an expected zero step-change of P2. Finally, 

we can combine Equations (28) to (30), (35) and (37) to obtain:  
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This is interesting for a number of reasons.  Note that the resistance kE does not appear in the 

above equation.  This is what would be expected: the resistance kE is only used to change the 

system flow.  If we assume that variation in the level of liquid (h) is the main reason for the 

baseline drift, then the value of  is independent of the values of the two flow resistances.  

This is because as the values of kD and kF are changed, both the drift and step-change values 

of P2 in Equation (26) change by the same amount.  If, however, we assume that the main 

source of baseline drift is the temperature changing by different amounts in the two 

resistances (so that the values of D and F are not the same), then this can be reduced by 

reducing the value of the main-flow resistance (kD).    

We can now calculate the actual value of  for the experiments shown in Figures 6 and 7.  

From Figure 6, the average drift in baseline over a 100-second timescale is about 0.1 mV.  

From Figure 7, an increase of the flow through the measuring resistance of 15% corresponds 

to a step change in the signal of about 20 mV.  These parameters show that   

00075.0)115.1(
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This is the order of 10
–4

 of the original flow rate.  If we assume a resolution of one part in 100, 

this would mean that we could use the current experimental arrangement to measure the 

adsorption of solutes present at levels of the order of 10
–2

.  A typical example might be an 

investigation of a new adsorbent to dry an ethanol stream containing 5% of water.  The natural 

question is then how we might improve the arrangement to measure the adsorption of solutes 

present at much lower concentration levels – say an order of magnitude reduction to 1000

ppm, since this would open up a large number of new applications.

Discussion

1. We first of all consider whether it is possible to determine the source of the baseline 

drifting in Figure 6.  This will be achieved by predicting  according to Equation (38).  The 

obvious reason might be that the liquid level (h) in the tank will vary with time.  Observation

would suggest that the liquid level might be maintained to perhaps 0.5 mm for which

0017.0
300

5.0




h

h

This is about twice the actual value (0.00075), and so would suggest that h might be 

maintained to around 0.25 mm: the liquid level may indeed be the major reason for the drift in 

the baseline. The second term in Equation (38) concerns drifting due to the change in density.  

The densities of ethanol at 21.0°C and 21.1ºC are 791.4 kg/m
3
 and 791.3 kg/m

3
 respectively.  

Therefore, if the temperature of the entire liquid column varies by 0.1°C, then we can write 

00013.0
790

1.0







This is a factor of six smaller than the actual value (0.00075), and would suggest that this is 

not a likely reason for the baseline drift. We finally consider that the temperature in the two 

resistances might not be the same.   The viscosity of a liquid is very sensitive to temperature: 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

for ethanol, the viscosities at 20.0ºC and 20.1ºC are 1.145 and 1.143 cP respectively.  

Consider that the temperature of ethanol in resistance kF increases by 0.1°C and that the 

temperature of resistance A remains the same.  We can then write  

0017.0
145.1

002.0

120

20DF

FD

D 





















kk

k

This is significant, and would indicate that insulation of the experimental arrangement from 

changes in ambient temperature is more important than we had considered at the outset.  At 

present, the whole arrangement is simply placed on the top of a bench.  

From the three calculations, there may be two ways in which the experimental arrangement 

could be improved to reduce the level of drifting.  First, to increase the value of h by say a 

factor of 10 and place the liquid beaker close to the roof of the laboratory.  Second, to increase 

the value of kF relative to the value of kD.  The current values are 20 and 1, respectively; an 

improvement would be to change these values to 14 and 7 so that the sum remains constant.  

These changes might reduce the drifting by a factor of 10.

2. There is another quite different reason why the baseline might vary with time.  The 

liquid is likely to contain particles that originate from the equipment, and the associated 

wetted surfaces.  As these particles are carried around the system, they may cause temporary 

blockages in the capillary tubes.  Furthermore, according to the classical theory of Einstein, 

the presence of particles as a suspension will cause a slight increase in the viscosity ().  This 

may vary with time as the particles settle and pass into the flowing liquid.  

3. There are a number of ways in which the experimental arrangement might be improved.  

The flow resistances are various length of stainless-steel tubing with an internal diameter of 

either 0.5 mm or 1 mm.  The same values of resistance might be achieved by using nylon 

tubing with larger inside diameters and longer lengths.  The larger diameter might be less 
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susceptible to any entrained particles in the ethanol.  Another possible modification concerns 

the supply beaker: the same beaker is used for both liquid flows.  It is possible that when the 

valve V2 is opened to allow the flow through resistance kE, this might cause a sudden (but 

tiny) drop in the liquid level causing a slight reduction in the flow through resistance kD.  This 

could be avoided by an extra supply beaker for the flow through resistance kE.  

4. There are two potential problems regarding the transfer of heat between the liquid 

flowing through the capillary tubes and the surroundings.  First, as discussed in Point 1, there 

is the potential for local changes in ambient temperature to change the liquid viscosity in each 

resistance by different amounts.  To this end, we would require the overall heat-transfer 

coefficient (U) to be as low as possible.  However, adsorption in the liquid phase can be a 

fairly exothermic process (where the temperature change can exceed 10°C).  To that end, we 

would require the “heated” liquid mixture leaving the adsorption column to “lose” this excess 

heat as quickly as possible: major requirements are that the viscosity of liquid in the 

measurement resistance (kF) should remain constant and that the whole system return to 

ambient temperature before completion of the experiment.  To this end, we would require that 

U should be as high as possible.

The flow through the tubing is laminar for which heat is transferred from the inside of the tube 

to the liquid by conduction.  This is a special case for which the Nusselt number = 3.66 

(constant wall temperature).  This allows determination of the heat-transfer coefficient (hcon):

)K(W/m732
001.0

2.066.3
Nu 2

con
con 


 h

k

dh

for a tube with an inside diameter of 1 mm (ethanol has a k value of 0.2 W/mK).  Depending 

on the mode of heat transfer between the surroundings and the tube wall, the value of U might 

vary from 10 to 500 W/m
2
K.  This might suggest that the best choice would be to place the 

capillaries and associated tubing in a constant-temperature enclosure with a high value of U.   
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5. A good choice for a first experimental investigation would be the water–ethanol system.  

Lau et al. (2004) used a column of length 47 cm and diameter 5 cm packed with spherical 

beads of 3A zeolite.  The intention was to dry a mixture containing about 3% by weight of 

water. A flow rate of 16.5 mL/min was set and the column outlet analysed to obtain the 

breakthrough curve (c(L,t)).  This started at a time of about three hours and was complete by 

about seven hours.  Adsorption of water onto zeolite is an exothermic process, and the 

concentration front was accompanied by a thermal wave with a peak temperature 20°C greater 

than the ambient temperature.  According to the equilibrium loading data, the water is 

strongly adsorbed, with the value of a greater than 5.  A better choice of operating conditions 

might be to reduce the column volume by a factor of 100, the diameter by a factor of 5 and the 

flow rate by a factor of 10.  This would allow the experimental time to be reduced by a factor 

of 10, and suppress the formation of any thermal wave through the column.  Furthermore, a 

major advantage of monitoring the flow rate is that a key parameter is the fractional reduction 

in column outlet flow rate that occurs straightaway when the concentration front enters the 

column.  This fractional reduction is independent of the amount of packing, although it will 

depend on the voidage in the column.                

6. We now return to the component material balance shown in Equation (12).  This can be 

written in a more-convenient form and then integrated to give:

ttQQtcttccQmm d)]()0([)(d)]([)0()()(

0 0

0liqAadsA   
 

(39)

The first integral term is the “standard” term for breakthrough of the concentration front.  The 

second integral term is a correction to allow for the variation in the outlet flow rate with time.  

The function within the integral will take the form of a peak since it will be zero at time zero, 

and then zero after breakthrough of the concentration front is complete.  For a “vertical” or 

“sharp” concentration front, the integral will have a zero value.  Indeed, the value of the 
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integral will increase with the width of the concentration front.  This has important 

implications.  Since the area given by Equation (8) is fixed for a particular value of (m)ads, 

then the individual integrals in Equation (39) will vary with the width of the concentration 

front.        

7. In Equations (18) and (19), it was assumed that the liquid mixture is ideal.  In reality, 

Equation (19) should be re-written as

BBAA

AAB
0
AB )(

vxvx

vxvvx

V

V







(40)

where vA and vB are the partial specific volumes of components A and B, which vary with 

composition of the liquid mixture.  Typically, the difference between using Equation (19) and 

(40) might be of the order of a few %. 

Conclusions

For the measurement of adsorption of a single component from the liquid phase, the standard 

approach is to monitor the concentration of the adsorbed component in the outlet flow from 

the adsorption column.  In this work, we consider how adsorption might be measured by 

monitoring the variation in the actual outlet flow rate.  One advantage of this approach is that 

there will be a step-reduction in the outlet flow rate that occurs as soon as the concentration 

front enters the column; moreover, from the material balance this reduction will stay at a 

constant level before the start of breakthrough.  This is preferable to the “concentration” 

approach, where it is necessary to wait until breakthrough of the front is complete, which can 

take a number of hours.  A major requirement of the developed theory is that the flow rate of 

the feed to the adsorption column should be maintained as constant as possible: this then 

determines the sensitivity of the equipment.  Our results would suggest that a gravity-driven

system with a liquid head of 30 cm is capable of monitoring a strongly-adsorbed component 
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present in the liquid phase at a mass fraction of about 1%. The limiting factor is how constant 

the liquid level in the feed tank can be maintained.  Increasing this height by a factor of 10 

should allow the method to deal with a component present at a level of about 1000 ppm.  An 

alternative for future investigations might be to replace the gravity-driven system with a series 

of syringe or piston pumps.                       
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Nomenclature

a Gradient of isotherm

c(L,t) Concentration of component A in flow leaving column (g/L)

c0 Concentration of component A in feed to column (g/L)

DL Effective axial dispersion coefficient in column (m
2
/s)

h Liquid head (cm)

hcon Heat-transfer coefficient between inside tube wall and ethanol flow (W/m
2
K)

kD Flow resistance to set initial flow (m
3

)

kE Flow resistance to add extra ethanol flow (m
3

)

kF Flow resistance to measure total ethanol flow leaving system (m
3

)

L Length of column (cm)

(mA)ads Mass of component A in adsorbed phase in the column (g)

(mA)liq Mass of component A in liquid phase in the column (g)

(mB)liq Mass of component B in liquid phase in the column (g)

ND Dispersion number

P1 Atmospheric pressure (Pa or bar)
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P2 Pressure used to monitor flow rate leaving system (Pa or bar)

P3 System discharge pressure (Pa or bar)

q Concentration of adsorbed component in adsorbed phase (g/L)

Q(t) Volumetric flow rate leaving column at time t (mL/min)

Qplat Constant-value value of Q(t) before start of breakthrough (mL/min)

Q1 Volumetric flow of ethanol in initial state (with V1 only open) (mL/min)

Q2 Volumetric flow of ethanol after opening valve V2 (mL/min)

Q3 Volumetric flow of ethanol through resistance B when valve V2 is open (mL/min)

r Ratio of actual flow rate to initial flow rate leaving column

tretn Time taken for (sharp) concentration front to emerge from column (s)

tvoid Simple residence time in column (s)

u Fluid-phase velocity in adsorption column (m/s)

U Overall heat-transfer coefficient (U) between ambient and ethanol (W/m
2
K)

0
Av Specific volume of component A at the system pressure and temperature (mL/g)

0
Bv Specific volume of component B at the system pressure and temperature (mL/g)

V Volume of  liquid (mL)

W Mass of adsorbent (g)

xA Mass fraction of adsorbed component (A)

xB Mass fraction of non-adsorbed component (B)

z Axial location in column (cm)

  Performance of experimental arrangement

B Viscosity of non-adsorbed component B (kg/ms)

D Viscosity of ethanol in resistance D (kg/ms)

E Viscosity of ethanol in (flow-changing) resistance E (kg/ms)

F Viscosity of ethanol in (flow-measurement) resistance F (kg/ms)
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  Column voidage

t  Density of outlet flow from column at time t (kg/m
3
)

B Density of non-adsorbed liquid B (kg/m
3
)

feed Density of feed to adsorption column (kg/m
3
)
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Figure 1: Schematic experimental arrangement for measuring adsorption in liquid systems.  

The empty volume is a key part of the experimental arrangement.  It maintains a constant 

composition (component B) in the flow resistance while the composition front is travelling 

through the column.         

Outlet: Q(t), 

(t), c(L,t)

Feed: Q(0), 

feed, c0

Empty 

volume 

Shaded section shows progress of 

composition front through column

Flow resistance to monitor variation of 

volumetric flow rate Q2(t) leaving system

Pressure P2(t) 

varies with flow 

rate
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Figure 2: Passage of a concentration front of finite width through an adsorption column. The 

shape of the front remains constant because the dispersion effects are ignored.  The arrow 

shows the progress of the front with time: the front shown with a dashed line corresponds to 

the start of breakthrough, and the final front corresponds to the completion of breakthrough.
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Figure 3: Idealised (linear isotherm, zero axial dispersion, instantaneous equilibrium) 

variation in the volumetric flow rate leaving the column.  The dotted line corresponds to the 

more strongly-adsorbed component: a = 6 compared to a = 3.  For each case, a sharp or 

vertical concentration front enters the column at time = 0.
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Figure 4: Actual variation in the column outlet flow rate for solution of the material balance 

with the inclusion of axial dispersion in the column.  The solid line is for a dispersion number 

of 0.01 and the dotted line is for a dispersion number of 0.05.   

    

Figure 5: Schematic of actual experimental arrangement to assess the sensitivity of a gravity-

fed system for the detection of changes in flow rate.
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Figure 6: Baseline signal (variation in P2) over 400 seconds, for which it can be seen that the 

voltage stays within a range of about 0.3 mV.  The flow rate of ethanol through resistance C is 

about 1 mL/min.  The 1 mV span corresponds to 0.0028 mbar.
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Figure 7: The first step in the pressure (P2) signal is obtained by increasing the ethanol flow 

rate through the measurement resistance (kC) by about 15%, from an original value of 1 

mL/min.  The second step is obtained by reducing the ethanol flow to the original value.  
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