Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Exploiting redundancies to improve performance of LT decoding

Tarus, H.K. and Bush, J.M. and Irvine, J. and Dunlop, J. (2008) Exploiting redundancies to improve performance of LT decoding. In: 6th Annual Communication Networks and Services Research Conference 2008. IEEE, pp. 198-202. ISBN 978-0-7695-3135-9

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Rateless codes are a class of codes without a predefined number of encoding symbols. Fountain codes are the first such codes. Luby Transform codes, designed by Michael Luby, are examples of these codes. The accepted and efficient decoding algorithm for these dense bipartite codes is the belief propagation (BP) algorithm as opposed to Gaussian elimination algorithm. LT codes are more efficient as the number of symbols grow. However for streaming purposes, the number of source symbols needs to be constrained while at the same time the probability of success be maintained. In this paper we propose a BP decoding enhancement algorithm using redundancies in the already received encoding symbols to improve the probability of performance of LT decoding. We show that in the limit our proposal achieves up to 15% performance improvement in decoding throughput with similar channel conditions. We emulate our proposal in software and the results follow that predicted by theoretical analysis.

Item type: Book Section
ID code: 14999
Keywords: source coding, rateless codes, erasure channel, Fountain codes, Electrical engineering. Electronics Nuclear engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 06 Sep 2010 09:30
    Last modified: 17 Jul 2013 13:25
    URI: http://strathprints.strath.ac.uk/id/eprint/14999

    Actions (login required)

    View Item