Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cavity initiation through an evaporating mechanism for the pulse breakdown in liquids

Atrazhev, V. and Vorobev, V. and Timoshkin, I. and MacGregor, S.J. and Given, M.J. (2009) Cavity initiation through an evaporating mechanism for the pulse breakdown in liquids. In: 17th IEEE International Pulsed Power Conference, 2009-06-28 - 2009-07-02.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents an analytical model which describes the dielectric strength of insulating liquids stressed with the impulse electric fields. The Joule heating by the space charge saturated current may cause over-heating of pure liquids or may result in generation of nucleation centers associated with impurities in the case of practical liquids. Evaporation of the liquid from these impurities has been analysed in the paper and formation criterion for percolation chains of gas bubbles in impure dielectric liquids has been established. Based on this percolation condition, the dielectric behavior of n-hexane has been studied. Breakdown volt-time characteristics of liquid n-hexane have been calculated for different temperatures, and its dielectric strength has been obtained as a function of externally applied pressure.