Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A comparative study of four novel sleep apnoea episode prediction systems

Robertson, H.J. and Soraghan, J.J. and Idzikowski, C. and Hill, E.A. and Engleman, H.M. and Conway, B.A. (2009) A comparative study of four novel sleep apnoea episode prediction systems. In: 17th European Signal Processing Conference, 2009-08-24 - 2009-08-28.

[img]
Preview
PDF
sleepapnoea.pdf - Accepted Author Manuscript

Download (301kB) | Preview

Abstract

The prediction of sleep apnoea and hypopnoea episodes could allow treatment to be applied before the event be-comes detrimental to the patients sleep, and for a more spe-cific form of treatment. It is proposed that features extracted from breaths preceding an apnoea and hypopnoea could be used in neural networks for the prediction of these events. Four different predictive systems were created, processing the nasal airflow signal using epoching, the inspiratory peak and expiratory trough values, principal component analysis (PCA) and empirical mode decomposition (EMD). The neu-ral networks were validated with naïve data from six over-night polysomnographic records, resulting in 83.50% sensi-tivity and 90.50% specificity. Reliable prediction of apnoea and hypopnoea is possible using the epoched flow and EMD of breaths preceding the event.