Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A concurrent blind receiver for STBC over doubly dispersive channels

Bendoukha, S. and Alhanafy, W.E.A.E. and Weiss, S. (2009) A concurrent blind receiver for STBC over doubly dispersive channels. In: 17th European Signal Processing Conference, 2009-08-24 - 2009-08-28.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Space-time block coding (STBC) achieves the maximum diversity gain of a flat fading multiple input multiple output (MIMO) transmission link. For frequency selective fading, only a few receivers can be found in the literature. These are mainly trained and block based, such as time reversal STBC (TRSTBC). A non-block based blind receiver for STBC over dispersive channels has been derived previously, adding a new term to the cost function of the constant modulus algorithm to orthogonalise the outputs. In this paper a decision directed (DD) equalizer is used concurrently with the CMA receiver to achieve faster convergence. Simulation results demonstrate the benefit of the proposed approach in terms of convergence speed and bit error ratio in a doubly-dispersive scenario.