Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Electrical distribution networks

Ingham, Matthew (2008) Electrical distribution networks. H02J 3/14.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Safe operation of electrical power distribution systems necessitates consideration of the fault level in terms of the potential for electrical current flow upon an earth or other fault within the electrical power distribution system. Previously, electrical power systems have been analysed to provide theoretical fault levels values for different zones of an electrical power distribution system based upon a worse case scenario. However, existing electrical loads will in practice provide a more adaptable and higher fault level. By monitoring and identifying an I-V characteristic upon switching electrical load in practical operation an actual default level at particular nodes in a power distribution system is determinable . In such circumstances decisions with regard to the connectablilty of further electrical generators or loads at particular parts and zones of an electrical power distribution system can be quantified by reference to the actual fault level rather than the theoretical worse case scenario level and therefore avoid unnecessary upgrading of transmission equipment or denying access to the electrical power system.