Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Multi-objective planning framework for stochastic and controllable distributed energy resources

Alarcon-Rodriguez, Arturo and Haesen, E. and Ault, G.W. and Driesen, J. and Belmans, R. (2009) Multi-objective planning framework for stochastic and controllable distributed energy resources. IET Renewable Power Generation, 3 (2). pp. 227-238. ISSN 1752-1416

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The amount of distributed energy resources (DER) in the grid is continually increasing, and the potential benefits and drawbacks are becoming clearer. However, there is still a lack of clarity in how these multiple effects interact and which trade-offs should be made in the integration of new DER. There is a clear need for appropriate DER planning tools in the current market environment, in which both DER operators and distribution system operators (DSOs) may have multiple, often conflicting objectives and where uncertainty remains present as to which targets can be reached with a high amount of DER in the grid. A novel multi-objective planning framework is presented for the integration of stochastic and controllable DER in the distribution grid. A case study that illustrates the proposed framework is presented. Active DER management in terms of curtailment as well as dispatch of units is studied using the proposed multi-objective approach. Additionally, the extent to which active DER can be used as an alternative for grid reinforcements is analysed. The results show that the proposed multi-objective approach permits a better evaluation of the potential of active DER to support system operation.