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ABSTRACT 
A novel approach to extract target motion descriptors in 
multi-camera video surveillance systems is presented. Using 
two static surveillance cameras with partially overlapped 
field of view (FOV), control points (unique points from each 
camera) are identified in regions of interest (ROI) from both 
cameras footage. The control points within the ROI are 
matched for correspondence and a meshed Euclidean dis-
tance based signature is computed. A depth map is esti-
mated using disparity of each control pair and the ROI is 
graded into number of regions with the help of relative 
depth information of the control points. The graded regions 
of different depths will help calculate accurately the pace of 
the moving target and also its 3D location. The advantage of 
estimating a depth map for background static control points 
over depth map of the target itself is its accuracy and ro-
bustness to outliers. The performance of the algorithm is 
evaluated in the paper using several test sequences. Imple-
mentation issues of the algorithm onto the TI DaVinci 
DM6446 platform are considered in the paper. 

1. INTRODUCTION 

Video Analytics (VA) for surveillance systems has evolved, 
to automatically detect and recognize objects. Several com-
puter vision based techniques were introduced into surveil-
lance systems in an attempt to extend their functionalities 
[1][2][3]. The range of video analytics for surveillance sys-
tems, includes all known fields of image and video process-
ing, ranging from object detection/recognition to behaviour 
analysis. The work in this paper proposes a novel approach 
to extract useful target information in the form of MPEG7 
motion descriptors [6][7]. It is assumed that the system has 
multiple cameras with partial overlapped FOV. To compute 
motion descriptors, the algorithm makes use of background 
modelling [2][3], feature extraction and matching [5][6] and 
depth estimation using disparity [9][10]. 
The paper is organized into five sections. Section 2 presents 
the novel approach of precise motion descriptor extraction 
using depth information of selected feature points. The algo-
rithm comprises four stages: (i) Feature Detection (ii) ROI 
Marking (iii) Depth Estimation and (iv) Motion Descriptors 
Extraction. Each stage is discussed in-detail in sub-sections 
of section 2. Section 3 outline the main features of the test-
bed selected for implementation: the DM6446 EVM, which 

is a member of Texas Instrument DaVinci family [11]. In 
section 4 results of the algorithm on selected test video se-
quence is discussed. Finally in section 5 some concluding 
remarks are presented. 

2. MOTION DESCRIPTOR EXTRACTION USING 
STEREO-PAIR SURVEILLANCE FOOTAGE 

The focus of this work is to develop efficient algorithms for 
video surveillance systems.  The processing can be on-line 
or off-line thus achieving effective usage of stored data re-
spectively. In a surveillance environment the resources, e.g. 
cameras, are normally not limited. More often one installa-
tion is covered with number of cameras, capturing different 
parts with partial overlapped field of view (FOV). Our algo-
rithm assumes two cameras capturing partially overlapped 
FOVs to extract information about the target. The algorithm 
comprising the following four stages is illustrated in Figure 
1: (i) Detect features (ii) marking ROI (iii) Estimating depth 
of selected feature points and (iv) Extracting motion descrip-
tors. The following sub-sections discuss the details of each 
of above-mentioned stages. 

 
2.1 Feature Detection 
The footage acquired from the two cameras is processed 
separately to acquire a background model (BGM). There are 
a number of good approaches that can be used to construct a 
BGM with and without post-processing. For this work two 
choices for BGM were tested. The first is a recursive tech-
nique called a Median Filtering (MF) [2] approach and the 
second is the Approximated Median Filter (AMF) [2].  MF 
sets each pixel in the BGM to be the median value as deter-
mined from the buffer of video frames. This technique pro-
vides very robust BGM at the cost of high memory usage. 
On the other hand AMF performs equally good with the use 
of post-processing [2]. The advantage of using AMF is two-
fold. Firstly the background image constitutes only the static 
part of the scene and secondly the image is robust to transient 
noise and fluctuations in intensity. AMF is computational 
efficient and simple to implement. Its limitation is that it does 
not model the variance of a pixel [2]. Another advantage of 
using AMF with post-processing is that the features extracted 
from the background are robust to noise and other short time 
abrupt changes in intensity.  
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Figure 1 – Block diagram of motion descriptor extraction using 

stereo-pair footage 

Computing the correspondence between stereo pairs depends 
on the accuracy and strengths of features extracted. Estab-
lishing correspondence between two views of a scene in-
volves either finding a match between the location of points 
in the two images or finding a transformation between the 
two images that maps corresponding points between the two 
images into one another [8]. The former is a feature based 
matching technique, whereas the latter is a direct method 
using optical flow. The work here uses feature-based method. 
The features used are corners and are extracted using the 
Harris corner detection technique [8]. The number of fea-
tures is filtered down to few using repeatability and accuracy 
criteria that we have published previously [3]. 
 
2.2 Marking ROI 
The FOV of footage acquired from the two cameras can be 
divided into three segments. One segment in both images is 
non-overlapping, the second is overlapping with significantly 
poor correspondence and the third is an overlapping segment 
with good correspondence. The last segment constitutes the 
ROI. Normalized Cross-Correlation (NCC) is a well known 
technique to establish correspondence between matched pair 
of features. For this work NCC is used to mark the ROI be-
tween two partially overlapped video frames. To mark the 
ROI accurately in two cameras footage, the images are firstly 
divided into four blocks of equal size as illustrated in Figure 
2. Search windows are defined in both images. As indicated 
the search windows in the reference image (Fig 2(b)) are 
significantly larger than those in the Fig 2(a), for example, a 
video stream of frame size 640x512 is divided into four 
blocks each of size 320x256. The search window for the ref-
erence frame is selected of size 150x150 and the search win-
dow for stereo-pair image is selected to be 60x60. In the 
worst case scenario, where there is no constraint on cameras 
FOV and no prior information is available, there could be as 
many as a maximum of 16 cross-region searches needed to 
find a seed for the ROI.  
However once the ROI is acquired the computational de-
mands drops significantly as only fine-tuning is needed to 
keep it up-to-date, as the two cameras are static. Also in the 

real world scenario there is prior information about the loca-
tion of cameras, which usually minimizes the cross-region 
search to 2 or 4. Also the fine-tuning of ROI is performed 
using a sub-set of matched feature point extracted in section 
2.1. The total number of feature points is filtered down to a 
few on the basis of repeatability, accuracy and trust vector as 
we have described in [3]. The resulting feature points are 
termed control points. 
 

 
Figure 2 - Stereo frames (a) 4-blocks with search windows of 60x60 

(b) showing reference frame with search windows of 150x150 

2.3 Depth Estimation 
The purpose of structure analysis in stereo-pair images is to 
determine accurately 3D location of image control points, as 
described in the last two sections. Figure 3 illustrates the 
geometry for disparity estimation using stereo-pair images. 
Assume complete knowledge of the perspective projection 
transformation matrix Q [8] is available for a point m = [u, v] 
in image I, as shown in Figure 3, which corresponds to point 
M = [X, Y, Z] in world coordinate, then the relationship be-
tween m & M can be written as [8]: 
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where qi is the ith row vector in perspective projection matrix 
Q. The scalar s can be eliminated from Eq(1) to become [8]: 
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Similarly for m’ in the image plane I’: 
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By combining Eq(2) and Eq(3) we get:   

AM = 0     (4) 
where, 

! 

A = q
1
" q

3
u q

2
" q

3
v q

1

/
" q

3

/
u
/
q
2

/
" q

3

/
v
/[ ]
T

 is a 4x4 ma-
trix that depends only on the camera parameters and the co-
ordinates of the image points. M is the location of 3D point, 
which has to be calculated. In conventional baseline stereo 
systems, as shown in the Figure 3 the solution to Eq(4) be-
comes simple, with the assumption that the two cameras are 
coplanar and by ignoring the intrinsic parameters of both 
cameras. The 3D parameter of object M can be calculated as 
[8]: 
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Figure 3 - Disparity estimation using Stereo-pair images 

2.4 Motion Descriptors 
We now have a depth map of our control points distributed 
over the entire ROI. The XZ plane is now quantized into 

! 

2
n  

layers, with n number of bits used to store depth informa-
tion. For example for n=2 produces an XZ plane quantized 
into 4 layers. As these layers shows only relative depths, it is 
quite likely that these layers will be non-uniform. Again the 
control points lie within two boundaries of the layers.  Hav-
ing control points with relative distances from a viewpoint 
we can accurately access the depth of foreground object, 
human or vehicle and extract motion descriptors, motion 
activity, motion trajectory etc. Here we will consider the 
example of only motion activity. 
 
2.4.1. Motion Activity 
For surveillance systems one of the most important descrip-
tors is motion activity, which provides the information about 
‘intensity of action’ or ‘pace of action’ in surveillance foot-
age. For efficient application a few additional attributes of 
motion activity are provided. Here we outline only two at-
tributes of motion activity: Intensity of Activity – this is ex-
pressed by an integer in the range 1-5. A high value of inten-
sity indicates high activity while a low value show low activ-
ity.  Direction of activity – while a video sequence may have 
several objects with different activity, we will identify a 
dominant direction of activity for one object, which represent 
objects of interest e.g. human or vehicle.  
If there are two or more foreground objects identified, the 
dominant direction of activity is computed for each and 
tagged along with it. Motion vectors provide the easiest ap-
proach to represent the gross motion characteristics of the 
video segment. Since the motion vector magnitude is an indi-
cation of the magnitude of motion itself, it is natural to use 
statistical properties of the motion vector magnitude of Mac-
roblock (MBs) defined earlier to measure intensity. We are 
interested in measuring motion activity of the foreground, for 
this we take the MBs of foreground motion mask to compute 
motion vectors. Also the effect of global motion is compen-
sated to get the absolute motion activity. Both the standard 
deviation and average of the motion vector magnitude rea-
sonably match the ground truth after proper quantization and 
scaling [7]. However, it is observed [7] that the standard de-

viation of the motion vector magnitude provides a slightly 
better approximation of the ground truth and hence the quan-
tized and scaled standard deviation of motion vector magni-
tude is used to compute the intensity of motion activity 
shown in Table 1. This shows the thresholds used for quanti-
zation of standard deviation σ. Our proposed empirically 
scaled standard deviation is: 
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where 2n are the number of depth map levels being identified. 

Table 1 Standard Deviation thresholds 

Activity value Threshold Range for σ 

1 

! 

0 "# < 3.9  
2 

! 

3.9 "# <10.7  
3 

! 

10.7 "# <17.1 
4 

! 

17.1"# < 32  
5 

! 

32 "#  
 

Table 2 Scaled Standard Deviations 

σ N σ’ 

32 1 8.0 
10.0 3 7.5 
15.5 2 7.75 
3.0 4 3.0 
18.0 2 9.0 

 
An example is illustrated in Table 2. The measured standard 
deviation vector σi, i=1,2,3,4,5 for respective layers Ni, i = 
1,2,3,4,5 is scaled using Eq(6) to form  σ’i , i=1,2,3,4,5.  If 
two objects at different depths cover the complete FOV in 
the same time then the motion of the object furthest from the 
observation point must be faster than the closer object. The 
same outcome can be observed from Table 2 where for ex-
ample when the standard deviation value σ1 equals to 32, 
suggesting very fast motion intensity. However when it is 
scaled using the layer information (N1 equals to 1, closest 
layer), the scaled standard deviation value, σ’ equals to 8 that 
suggests medium motion activity.  
There are two sources of error when computing the scaled 
standard deviation value: (i) the use of linear scaling as 
shown in Eq(6) and (ii) relative assessment of depth regions. 
The first can be reduced by increasing the number of depth 
levels (like quantization error) while the second source of 
error can be minimized by using a datum point with known 
depth from the camera and computing the relatively accurate 
depth maps for different regions. 

 
2.4.2. Motion Direction 
The directional characteristics for each foreground object are 
represented with an average angle and variance of the angle 
[6][7]. The directional angle is computed over the foreground 
motion mask. For more then one motion mask, separate di-
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rectional angles are computed. For this work we define the 
angle matrix A as [7]: 
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and (xi,j yi,j) are the pixel values of motion vector within the 
(i,j)th MB. The average angle, Aavg of the object and variance 
of A is given as: 

! 

A
avg

=
1

MN
A(i, j)

j

N

"
i

M

"   

! 

" ang
=
1

MN
(A(i, j) # Aavg

)
2

j

N

$
i

M

$     (8) 

where M and N are the width and height of foreground object 
under-consideration in the MB. 

3. TESTBED & IMPLEMENTATION 

To implement the algorithms requires a processing unit with 
high computational power, large memory, and an efficient 
video acquisition front end. These requirements are available 
through the use of DM6446 EVM. The DM6446 leverages 
TI’s DaVinci technology to meet the network media applica-
tion processing needs [11]. The dual-core architecture pro-
vides benefits of both DSP and RISC technologies, incorpo-
rating a high performance C64x+ DSP core and an ARM9 
core. Using this dual core has the advantage of full DSP 
computational power available for certain algorithm compo-
nents and an ARM core for dealing with all peripherals to 
fetch media data. The ARM core runs at 300 MHz clock and 
C64x+ CPU runs at 600 MHz clock rate [11]. The processor 
has a powerful feature of parallel instruction execution and 
can execute up to 8- instruction per cycle. The cache plays a 
very important role for real time implementation. DM6446 
DSP has separate program and data cache, as shown in the 
Figure 4. The EVM also has a large L2 cache of 128 KByte 
that is mapped into RAM. The algorithm presented in this 
paper needs several previous time frames, for BGM and for 
disparity estimation. This requires fast accessible memory 
[12].  DM6446 EVM has a large external 256 MByte mem-
ory with access data rate of 333-MHz. Finally the algorithm 
needs to display different depth marks onto the video se-
quence. This can be achieved with the use of On-Screen Dis-
play (OSD) feature of evaluation board [11]. 
The DaVinci platform employs an on chip operating system, 
such as Linux. The operating system can be used to debug 
DSP more effectively. Serial or network connection is used 
to upload source code and also used for debugging.  
Software development is divided into three areas , (i) Appli-
cation layer (ii) I/O layer and (iii) Signal Processing layer, as 
shown in Figure 5. DaVinci platform also provides a collec-
tion of optimized image/video processing functions 
(IMGLIB) [13].  These library functions include C-callable, 
assembly-optimized image/video processing routines. These 
functions are typically used in computationally intensive 
real-time applications where optimal execution speed is criti-
cal [13]. 

 
Figure 4 - DM6446 Dual core Architecture 

 

 
Figure 5 - DM6446 Software development layers 

4. RESULTS 

For performance testing of the algorithm video streams were 
captured in a typical multi-camera surveillance environment. 
For simplicity of reconstruction mathematics, the two cam-
eras image planes are kept roughly parallel to avoid any ori-
entation around the axes. BGM acquired using post-
processing and AMF help extract robust feature points in 
both video streams, most of the feature remain consistence 
with their strings throughout the test sequence. ROI marking 
using NCC was very accurate and efficient. Figure 6 shows 
the result of marking the ROI. The features labelled with red 
are those that lie within the ROI while those labelled in blue 
shows features outside ROI. In Figure 7 the result of depth 
estimation for selected control points are shown. Depths are 
quantized into four regions. Here the control points marked 
with red are the farthest and then blue, green and yellow rep-
resent respectively decreasing depth levels. These depth lev-
els are used to estimate the distance of foreground object and 
finally the pace of its motion is computed. A video sequence 
with different motion pace in different regions is used to test 
the algorithm and the resultant values of scaled standard 
deviation (SD), using Eq(6), are shown in Table 3. From 
Table 3, it can be observed that SD values, in the 2nd column, 
suggest motion pace: slow, medium, very slow and fast, are 
scaled to, in 4th column: very slow, slow, very slow and slow 
respectively. The implementation of this algorithm onto 
DM6446 has the advantage of its dual core and large mem-
ory. The DSP core can be used for algorithm and ARM will 
perform the task of fetching video frames. The problem of 
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taking multi-camera feeds can be resolved using a http call 
from a network port. Such a configuration with one IP-
camera and one analogue camera is shown in Figure 8. Also, 
as mentioned earlier, the feature extraction process is robust 
due to AMF for BGM that provide the flexibility of using 
every 5th frame for feature extraction and correspondence 
computation. This will significantly reduce the computational 
requirements. 

Table 3 Scaled SD Values for test sequence 

Frame slots SD  σ Region N Scaled SD σ’ 
27-60 5.98 2 2.99 
83-92 11.3 3 8.5 

119-158 3.8 3 2.85 
185-191 18.6 2 9.8 

 

5. CONCLUSIONS 

The work presented here provides a feasible and efficient 
solution for surveillance system problem of real time motion 
activity monitoring regardless of target distance from the 
camera. Using the persistent feature points from BGM to 
acquire depth estimation is more robust compare to depth 
estimation of the target themselves. From an implementation 
point of view it is suggested to use an Ethernet port and 
video port to connect IP and analogue cameras to the 
DM6446 target board. 
 

 
Figure 6 - ROI marked with yellow, feature in red in ROI  

 
Figure 7 - Frame from camera 1, showing depth of selected feature 
points. Red showing farthest then blue, green and yellow nearest 

 
Figure 8 – Proposed DM6446 layout with IP & analogue Cameras 
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