Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Image change detection using copulas

Zeng, Xuexing and Durrani, T.S. (2008) Image change detection using copulas. In: 9th International Conference on Signal Processing, 2008. IEEE, pp. 909-913. ISBN 978-1-4244-2178-7

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper explores a new class of measures for the detection of changes in images, specially for images acquired from different classes of sensors such as synthetic aperture radar (SAR) systems or computerized axial tomography (CAT) systems, monitoring patients. The problems become very challenging as the local statistics may be different even though the observations in the images may be similar. By exploiting this similarity new approaches are proposed for change detection. Based on the assumption that some form of dependence exists between the images, this dependence can be modeled by copulas. By using the conditional copula and the second image to simulate the distribution of first image, the dependence between the two images may be more closely modeled by the ensuing joint distribution. As a follow on, the symmetrical Kullback-Leibler distance can be used to obtain the change indicator between the distributions associated with the two images. In this paper the conditional copula is used as a change detector and applied to scenes from two distinct and different image families -SAR and CAT, and its performance compared with that of conventional change detection algorithms, based on a pixel based difference measure and on local pixel statistics.