Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling

Chakraborty, Arup Lal and Ruxton, Keith C. and Johnstone, W. (2010) Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling. Optics Express, 18 (1). pp. 267-280. ISSN 1094-4087

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Recently a technique to optically eliminate the background residual amplitude modulation in 1f wavelength modulation spectroscopy was demonstrated, where perfect elimination throughout the scan range was not achieved due to the wavelength-dependence of couplers and that of the laser intensity modulation. This paper theoretically analyzes the technique and experimentally demonstrates that the elimination can be perfect for one of three possible experimental configurations, making this important for potential applications with some recently-developed laser sources. For the other configurations a non-zero background slope is predicted, experimentally verified, and the anomalous nature of signals is thereby explained. A common signal normalization method is devised that is independent of the signal slope, a fact that is important for industrial deployment of such systems.