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Abstract

A computer simulator, to facilitate the design and assessment of a reconfig-
urable, air-coupled ultrasonic scanner is described and evaluated. The spe-
cific scanning system comprises a team of remote sensing agents, in the form
of miniature robotic platforms that can reposition non-contact Lamb wave
transducers over a plate type of structure, for the purpose of non-destructive
evaluation (NDE). The overall objective is to implement reconfigurable array
scanning, where transmission and reception are facilitated by different sens-
ing agents which can be organised in a variety of pulse-echo and pitch-catch
configurations, with guided waves used to generate data in the form of 2-D
and 3-D images. The ability to reconfigure the scanner adaptively requires an
understanding of the ultrasonic wave generation, its propagation and interac-
tion with potential defects and boundaries. Transducer behaviour has been
simulated using a linear systems approximation, with wave propagation in the
structure modelled using the local interaction simulation approach (LISA).
Integration of the linear systems and LISA approaches are validated for use
in Lamb wave scanning by comparison with both analytic techniques and
more computationally intensive commercial finite element/difference codes.
Starting with fundamental dispersion data, the paper goes on to describe the
simulation of wave propagation and the subsequent interaction with artificial
defects and plate boundaries, before presenting a theoretical image obtained
from an team of sensing agents based on the current generation of sensors

Preprint submitted to Ultrasonics September 24, 2010



and instrumentation.
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1. Introduction

The concept of a miniature, autonomous and mobile, robotic sensor is
extremely attractive for many applications involving NDE of structures. Ex-
amples include the aerospace, nuclear and petrochemical industries, where
issues of scale and/or access can be paramount. In principle, such vehicles
may comprise a heterogeneous fleet of remote sensing agents, each capable
of operating independently, or as part of an intelligent team, combining to
maximise information on the integrity of the structure under test.

Major advantages of this approach include the ability of the individual
sensing agents to carry multiple sensor payloads (e.g. optical, magnetic,
ultrasonic), each providing a different form of information. Provided that
positional information on each mobile platform is sufficiently accurate, fus-
ing of the individual sensor data can provide enhanced probability of defect
detection. Moreover, the fleet approach has the ability to reconfigure dy-
namically, based upon sensor findings, or a change in operating conditions.
This can take different forms. For example, a sensing agent carrying a more
detailed (in terms of form and/or resolution) payload maybe ‘called up’ to
interrogate a suspect region. Alternatively, the fleet can operate in the form
of a reconfigurable array, which is capable of dynamic alteration of its shape,
distribution and sensor format.

The current generation of sensing agents developed by some of the authors
incorporates three inspection modalities, with each vehicle possessing visual,
magnetic or ultrasonic sensor systems. Data analysis and positional control
are provided via dedicated on-board processing, with inter-vehicle and base
communications conducted via wireless link. Further details are contained
in [1] and [2].

The creation of a fully autonomous fleet of reconfigurable sensing agents
necessitates careful analysis with regard to vehicle positional accuracy, the
nature of the structure under test and the optimal combination of sensor
units. Arguably, this is best achieved with the aid of a computer which is
capable of accurately replicating the entire system. This would also con-
fer additional advantages for data interpretation and vehicle guidance. To
be practically useful, full simulation in three dimensional (3D) space is re-
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quired. This should encompass sensor behaviour (including interfacing),
sensing agent positional information, structural form and defect modelling.
For example, non-contact, through air ultrasound has recognised advantages
for long range scanning in plate-type structures [3] [4] and is shown exper-
imentally using sensing agent hardware in [1]. Any simulator has to be
capable of modelling transducer characteristics, wave propagation and inter-
action with meaningful synthetic artefacts, in addition to variations in the
positional certainty of individual sensing agents within the fleet. The simu-
lator also has to be reasonably interactive, in order to assist the user with
algorithmic development and system design issues.

Commercial finite element/finite difference modelling codes such as AN-
SYS [5], COMSOL [6] and PzFlex [7] are capable, of providing a basis for
such a simulator. However, computer run-time is prohibitively expensive, es-
pecially in 3D. More approximate approaches, such as the use of ray tracing
will help alleviate this problem, but invariably, modelling of the underly-
ing physics is compromised. This paper describes an alternative approach,
involving a combination of constrained sensor modelling, ray tracing and a
relatively new technique, the local interaction simulation approach (LISA)
[8].

This software implementation allows for relatively straightforward inte-
gration of simplified but accurate 1-D models of a piezoelectric transducer
[9] with the LISA wave propagation model. Additionally, it provides a po-
tential path for the modelling to be distributed amongst the sensing agent
platforms themselves (since each sensing agent contains significant on-board
computational capabilities). The overall goal is to enable structurally specific
inspection tasks to be optimised taking into account both the physical aspects
of the ultrasound propagation, along with the specific dynamic capabilities
and restrictions of the sensing agent platforms. An additional complication
is that in any optimisation task, it is vital to minimise the calculation speed
for each individual propagation case considered. If the simulation time is too
long, then effective optimisation (where many slightly different cases must be
computed and compared) becomes very difficult. This area is one in which
the advantages of the LISA simulation over conventional finite element mod-
elling is highlighted.

The paper addresses a specific form of inspection, that of air-coupled, ul-
trasonic Lamb wave testing of structures. From the sensing agent standpoint,
this is an important configuration. For example, both the ultrasonic trans-
mitter and receiver can be mounted on a single sensing agent, facilitating
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local pitch-catch measurements [1] [2]. Alternatively, relatively long range
pulse-echo and pitch-catch scans can be performed using different spatial
permutations of sensing agents, including raster, tomographic and synthetic
aperture imaging formats. Importantly, the viability of using appropriate
angled, air coupled (i.e. non-contact) ultrasonic transducers for generation
and detection of the fundamental anti-symmetric (A0) Lamb wave and using
this successfully for testing, has been demonstrated previously by some of
the authors and other workers [3] [27] [11].

2. Simulation Overview

Figure 1 shows one simulation scenario detailing the generation, propa-
gation and reception of ultrasonic Lamb waves. The sensing agent simula-
tion provides variable transmitter and receiver positions which can be used
directly as the transducer locations in the ultrasonic simulation. The simula-
tion of mobile robots has previously been demonstrated by [12] and dynamic
modelling of differential drive mobile robots is well established [13, 14, 15]
and will not be detailed herein. The sensing agent model was built using
the same logic and control code that is run on the computer embedded in
the sensing agent [1] which talks to a common interface. When simulating
a sensing agent the code is interfaced to a dynamic model of the robots me-
chanics/actuators, whereas when operating a physical sensing agent the code
is interfaced to the hardware.

Figure 2 shows a 2D representation of the ultrasonic modelling problem,
illustrating the air coupled piezoelectric transducers used to generate and
receive ultrasonic A0 Lamb waves. Instead of performing a finite element
analysis of the complete system which would be prohibitively computation-
ally expensive, the model is broken into sections. A Linear Systems Model
[9] is an unidimensional model of a piezoelectric ultrasonic transducer and
can be used to calculate the impulse response function. A Local Interaction
Simulation Approach (LISA) [8, 16, 17] is used to model wave propagation
in the plate, and a ray tracing approach is adopted to interface between the
two models.

Previous Lamb wave modelling work using a LISA approach [18, 19] has
simplified the simulation to a 2D problem in the X-Y plane, and modelled a
single Lamb wave mode as a bulk wave with the same velocity. This approach
however does not simulate different modes and cannot accommodate effects
of mode conversion, dispersion and allowance for defects that are not full

4



Figure 1: Basic Geometry for the sensing agent scanning. Each sensing agent (1,2) carries
an air-coupled ultrasonic transducer which can be used for transmission or reception.
Sensing agent positions are independently controlled across the scanned area.

thickness. Additionally since an X-Y model cannot model the out-of-plane
displacement it is unsuitable for the current application where the out-of-
plane motion of the A0 mode is fundamental to the measurement process.

To avoid this problem, two scenarios were considered by the authors.
Firstly a 2D X-Z plane model (considering a plate of infinite width) was used
to validate the LISA model and determine the required mesh resolution.
Secondly a complete 3D model using LISA was created which allowed Lamb
wave propagation in both the X and Y dimensions to be simulated. Since
the 3D simulations were significantly more computationally expensive than
their 2D counterparts, they were only performed when the test geometries
considered made them essential.

3. Local Interaction Simulation Approach (LISA)

Finite difference and finite element are standard techniques used for wave
propagation modelling, examples include [20, 21, 22]. Finite element models
are able to cope with complex geometries but do not have the ease of imple-
mentation of finite difference based models. In particular, when the sample
geometry is relatively simple (e.g. a rectangular plate), then finite difference
techniques become increasingly attractive in terms of ease of implementation.
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Figure 2: 2D representation of ultrasonic propagation simulation. Tx and Rx are modelled
with linear systems approach. Plate is discretised into nodes for either finite element or
LISA model.

The LISA technique is similar to finite difference modelling in that it discre-
tises the modelling problem temporally and spatially to a series of iterative
equations. With LISA the model is created heuristically from a discretised
model, whereas in fintie difference modelling the partial differential equations
(PDE) that describe a continuous model are discretised using finite differ-
ence formulation [23]. Importantly LISA bypasses the approximation made
by finite difference when it converts derivatives into finite differences that
leads to severe errors at sharp discontinuities, making LISA more accurate
for inhomogeneous simulations. Delsanto et al pioneered LISA development
and have shown [16] direct comparison between finite difference modelling,
LISA and a analytical solution for wave propagation in a bilayer.

3.1. Theory

The LISA algorithm (Equation 1) is relatively straight-forward in one
dimension.

wi
t+1 = Twi−1

t + T ′wi+1
t − wi

t−1 (1)

where
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T = 2
1+ζ

T ′ = 2ζ
1+ζ

ζ = Z1

Z2

This iterative equation gives the displacement of a gridpoint wi at the
next timestep (t + 1), relative to the displacement of the gridpoint at the
previous timestep and the displacement of the gridpoint on each side (i + 1
and i − 1). The transmission coefficients T and T ′ allow for propagation
through a heterogeneous medium ( multilayers in the 1D case) with acoustic
impedance Z. The algorithm assumes homogenous material properties in each
cell, but cells can have different material properties - referred to as the Sharp
Interface Model (SIM) [16]. Equation 1 assumes that the nodes are spaced
for stability, a condition governed by Equation 2.

vτ/ε <= 1 (2)

where v represents the longitudinal velocity of sound in the medium, τ
the timestep and ε the cell size. The LISA iteration equation can easily be
extended to 2D [16] and 3D [17] geometries. Readers are referred to [8] for a
full derivation of the 1D algorithm.

An abridged derivation of the 2D algorithm will now be presented, start-
ing with the elastodynamic wave equation [24]:

∂l(Sklmn∂nwm) = ρẅk (k, l,m, n = 1, 3) (3)

where S is the stiffness tensor, ρ is the material density and w is the par-
ticle displacement. Ignoring antiplane shear waves to concentrate on two-
dimensional wave propagation, this can be simplified to:

∂k(σkwk,k + λwh,h) + ∂h[µ(wk,h + wh,k)] = ρẅk (4)

(k = 1, 2, h = 3− k = 2, 1)

where σk = Skkkk, λ = S1122, µ = S1212 and a comma preceding a subscript
denotes differentiation with respect to that variable. λ and µ are the Lamé
constants for the material.

For a homogenous specimen, Equation (4) can be rewritten as,

σkwk,kk + µwk,hh = υwh,kh = ρẅk (k = 1, 2, h = 2, 1) (5)

7



where υ = λ + µ = σ − µ. In matrix form this can be written as,

AW,11 + BW,22 + CW,12 = ρẄ (6)

where: A =

(
σ1 0
0 µ

)
, B =

(
µ 0
0 σ2

)
, C =

(
0 υ
υ 0

)
and W =

(
w1

w2

)

Figure 3: LISA spatial discretisation

In a 2D LISA simulation the structure is discretised into cells, as shown
in Figure 3. Each nodal point P is at the junction of four cells. The second
time derivatives across the four cells are required to converge towards a com-
mon value at the point P, which ensures that if the cell displacements are
continuous at P for the two initial times t = 0 and t = 1, they will remain
continuous for all later times.

Using a finite difference scheme for the spatial first derivatives in the
four surrounding cells to P, gives four equations in eight unknown quantities
{wm,n},m = 1, ..., 4, b = 1, 2. These equations are omitted here for space
reasons. Imposing continuity of the stress tensor τ at the point P and us-
ing further finite difference formulae gives four additional equations in the
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unknown quantities {wm,n}, thus allowing these unknown spatial first deriva-
tives to be solved.

The following definitions are made,

gi = λi − µi (7)

σc
(d) is the stiffness tensor in cell c in direction d, c = 1,4, d = 1,2.

σ(d) =
σ1

(d) + σ2
(d) + σ3

(d) + σ4
(d)

4
(8)

µ =
µ1 + µ2 + µ3 + µ4

4
(9)

ρ =
ρ1 + ρ2 + ρ3 + ρ4

4
(10)

σ5 =
σ1 + σ4

2
, σ6 =

σ1 + σ2

2
, σ7 =

σ2 + σ3

2
, σ8 =

σ3 + σ4

2
(11)

The particle displacements in the x and y directions in Figure 3 are denoted
as u and v respectively. Recalling that υi = λi + µi, after a certain amount
of algebra, these u and v displacements at the point P can be calculated as,

ut+1 =

2ut − ut−1 +
1

ρ
[σ5

(1)u5 + σ7
(1)u7 + µ6u6 + µ8u8

− 2(σ(1) + µ)ut − 1

4

4∑

k=1

(−1)kυkvt

− 1

4

4∑

k=1

(−1)kυkvk + ǵ5v5 + ǵ6v6 + ǵv7 + ǵ8v8]

(12)

vt+1 =

2vt − vt−1 +
1

ρ
[µ5v5 + µ7v7 + σ6

(2)v6 + σ8
(2)v8

− 2(σ(2) + µ)vt − 1

4

4∑

k=1

(−1)kυkut

− 1

4

4∑

k=1

(−1)kυkuk + ǵ5u5 + ǵ6u6 + ǵu7 + ǵ8u8]

(13)
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where: ǵ5 = 1
2
(g4 − g1), ǵ6 = 1

2
(g1 − g2), ǵ7 = 1

2
(g2 − g3) and ǵ8 = 1

2
(g3 − g4)

Equations 12 and 13 are the principal displacement equations of LISA in two
dimensions. A more detailed derivation can be found in [16], although note
that a number of small errors present in the formulae within that paper have
been corrected in [18] and [19]. These two equations rely solely on known
material properties σ, λ and µ for each cell and arbitrary discretisation steps,
both spatial and temporal.

A simulation of wave propagation in an aluminium plate may consist of
a layer of cells surrounded by a thin layer of air. The material properties can
be defined for each cell, so defects such as slots can be easily represented by
replacing some of the plate cells with air cells. The fundamental simplicity of
the LISA algorithm allows for highly efficient implementation and since the
LISA discretisation is regular, the locations of cells do not need to be stored
in memory, but can be calculated at run time further improving speed while
reducing memory requirements. Since each node has to be individually cal-
culated, LISA does not scale particularly well - as volume increases linearly,
the number of nodes increases by a factor of three. However this is a gen-
eral problem with discritisation in finite difference and finite element models
and not specific to LISA. Importantly, since each node only depends on its
nearest neighbours, the model lends itself well to parallelisation. This opens
the way for future work to potentially implement the LISA modelling task
itself across a fleet of sensing agent vehicles each with its own microcontroller
based acquisition and control system.

4. LISA Validation

In order to validate the LISA propagation model, a comparison between
LISA, standard finite element modelling modelling software and numerical
solution to the Rayleigh-Lamb frequency equations was performed. Guided
waves were chosen for the validation exercise as the presence of multiple
modes of propagation, combined with the variation of phase velocity with
Frequency Thickness Product (FTP), provided an exacting test of the accu-
racy of the results.

4.1. Dispersion

An approach [25] based on a spatially sampled impulse response function,
followed by a 2D FFT was used to recover the spatial and temporal frequency
components of the propagating waves. A 2D simulation of a 250mm long,
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infinitely wide, 1mm thick aluminium plate was preformed. The plate was
excited with a single cycle of a sine wave (2µs duration with 0.125mm spatial
diameter) and spatially sampled to create a series of discrete time surface
displacement measurements as shown in Figure 4. The excitation was applied
to a distance of 1/3 into the plate (83mm) and the simulation was run only
until the wave reached the outer edge of the plate to ensure no edge reflections
were present. Taking a 2D FFT of this time-space data matrix produced
a frequency-wavenumber [f-k] space data which was plotted to reveal the
dispersion of the propagating waves; as shown in Figure 5.

Figure 4: Simulation of spatially sampled broadband wave propagation in a plate

Figure 5 shows a contour plot of the [f-k] dispersion matrix, which exhibits
good agreement with analytic theory [26] shown as dashed lines. The multiple
modes are clearly visible and of the correct shape. This plot was generated
using a 2D LISA model where the 1mm thickness was divided into 8 cells.
To compare the accuracy of fit of the simulation with the numerical solutions
of ‘Disperse’ [26], a method of extracting the local maxima of the dispersion
curves was developed, followed by calculation of an error function. A filter
was written to automatically extract the local maxima in the [f-k]dispersion
plot. The filter considered each pixel in the image and subtracted the mean
of the surrounding N2 pixels (N = 14 was found to work best). It then
normalised the data and set any point with a value below 50% to 0 and
anything above 50% to 1. Finally the filter replaced any small clusters of
points with a single point equal to the average.

Figure 6 shows the filter applied to the data of Figure 5 to extract the
local maxima.

In order to have an objective measure of the goodness of fit, the nor-
malised mean-square error (MSE) is introduced, the definition is:

MSE(x̂) =
100

Nσ2
x

N∑
i=1

(xi − x̂i)
2 (14)
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Figure 5: Contour plot of Lamb wave dispersion matrix: LISA simulation results for 2D
model, plate thickness 1mm, 8 cells

where the caret denotes an estimated quantity. This MSE has the following
useful property; if the mean of the output signal x is used as the model i.e.
x̂i = x for all i, the MSE is 100.0, i.e.

MSE(x̂) =
100

Nσ2
x

N∑
i=1

(xi − x)2 =
100

σ2
x

.σ2
x = 100

Experience shows that a MSE of less than 5.0 indicates good agreement
while one of less than 1.0 reflects an excellent fit.

The accuracy of LISA was measured by calculating the normalised mean
squared error of dispersion curves using ‘ideal’ data generated numerically
by Disperse [26]. x̂i is the frequency thickenss product of a sample from the
LISA dispersion plot and xi is the corresponding point from Disperse for the
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Figure 6: Comparison between automatic local maxima extraction algorithm and numer-
ical solution (dashed lines)

same wavenumber (using linear interpolation between discrete data points
where required).

4.2. Cell density considerations

One of the most significant parameters in the implementation of LISA is
the mesh density. Increasing the density improves the accuracy, but increases
the computational complexity of the model. In 2D simulations, fine meshes
do not present such a problem, as most simulations take less than a few
minutes to run. However in 3D, the computation is more involved and run
times can reach several hours. It should be noted that to maintain stability,
halving the cells size also requires the time step to be halved, as indicated in
Equation 2. In 3D, halving the time step increases the run time by a power
of four (double the number of cells in each dimension plus double the total
number of frames). Memory requirements scale linearly with the number of
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cells, making large 3D simulations prohibitive on desktop workstations. Mesh
Sensitivity Analysis showed that reducing the cell size (hence increasing the
density) improved the correlation with theory. The results are shown in
Figure 8.

Figure 7: LISA simulation of 1mm thick plate with 4 cells through the thickness - showing
the S0, A0 modes and analytic solution (dashed lines)

It should be noted that since the current sensing agent platforms selec-
tively generate and receive just the A0 mode, good correlation with A0 is
likely to be sufficient for current applications. The minimal functional den-
sity is 2 cells/mm, which gives a reasonable approximation of A0 with a
MSE of 1.6, however no other modes are present. Increasing to 4 cells/mm
provides an excellent approximation of A0 (MSE = 0.13) and a reasonable
approximation of S0 (MSE =4.3), this is shown in Figure 7, noting that S0

diverges from the analytical solution for FTP > 2 MHzmm. In order to get
an excellent match for both A0 and S0 (MSE < 1) the cell density must be

14



2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Mesh Density (Cells / mm)

N
or

m
al

is
ed

 M
S

E
Accuracy of LISA vs Mesh Density

 

 
A0
A0 Trend
S0
S0 Trend

Figure 8: Variation of LISA accuracy(2D) as a function of mesh density expressed as MSE
from analytic model. The horizontal dashed lines represent MSE = 5 - good agreement
and MSE = 1 - excellent agreement

increased to 8 cells/mm. This is shown in Figure 5 which also shows the
higher order modes.

5. Comparison with a Commercially Available Package

The low level control provided by custom implementation facilitates in-
terfacing with other models, such as the linear systems model, that would
not be straightforward with a commercial closed-source package. However,
in order to fully justify the use of LISA over commercial finite element pack-
ages, a comparison was performed between LISA and a leading simulation
package PZFlex [7] to compare accuracy and calculation speed.
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5.1. Accuracy

As discussed in Section 2 a 3D simulation is required for high accuracy.
However as discussed in section 4.2 the computational intensity of 3D mod-
els often results in prohibitively long run times and hardware requirements
making a coarser mesh with a reduction in accuracy a practical choice. As
expected PzFlex followed the same trend. The publishers of PzFlex recom-
mend a minimum of 20 cells throughout the thickness for a Lamb wave plate
simulation, however this is impractical in 3D, so a mesh sensitivity study was
performed in 2D to determine how the accuracy degraded with the cell den-
sity. The results for PzFlex are shown in Figure 9. It was found that below
6 cells/mm PzFlex did not produce coherent results and that 6 cell/mm pro-
vided a good match for A0 and a reasonable match for S0 (MSE = 0.16 and
3.3 respectively) - Figure 10 which should be compared with the 4 cells/mm
result for LISA shown in Figure 7.

5.2. Speed

Using LISA with 4 cells/mm through the thickness provided a good trade-
off between speed and accuracy and was roughly equivalent to 6 cells/mm for
PzFlex. Both provide a good approximation of A0 and a reasonable approx-
imation of S0 which diverges at higher wavenumbers, as shown in Figures 7
and 10.

In order to compare the simulation speeds a 250x250x1mm aluminium
plate was modelled in 3D using 4 cells/mm for LISA and 6 cells/mm for
PzFlex. The simulation was identical to that preformed in Section 4.1 except
the 3D geometry was modelled. The simulations were set to run for 90us of
simulation time. The results are shown in table 5.2. The comparison was
performed on a Windows XP (64 bit edition) 2.4GHz quad-core workstation
(2 dual AMD Opterons) with 16GB RAM.

Table 1: PZFlex vs LISA speed comparison
Package Time to run 90us simulation
PzFlex 2 hours 58 minutes
LISA 53 minutes

It is clear that in this instance the custom LISA propagation code out-
performed the commercial package by a factor of approximately 3.
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Figure 9: Accuracy comparison (2D) between LISA and PzFlex as function of mesh density.
The horizontal dashed lines represent MSE = 5 - good agreement and MSE = 1 - excellent
agreement

6. Angled Transducers

This section links the linear systems model with the LISA wave propa-
gation model to create an angled transducer pitch-catch model, to simulate
air-coupled Lamb wave generation and detection, as required by the sensing
agents.

6.1. Linear Systems Model

A Linear Systems Model [9] was used to model response of the transmitter
and receiver transducers. The input drive or received signal was convolved
with the simulated transducer impulse response. This work has previously
been published by some of the authors [27], [11] so will not be discussed in
detail. 1-3 piezocomposite transducers were designed to operate at a centre
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Figure 10: PzFlex simulation of 1mm thick plate with 6 cells though the thickness -
showing A0, S0 modes and analytic solution (dashed line)

frequency of 600kHz in pitch-catch mode. The transmitter had a 70% volume
fraction of PZT-5H and the receiver had a 30% volume fraction of PZT-5A.
In both cases the passive filler material was epoxy (CY1301/HY1300). A
special low-loss matching layer was integrated onto the front-face of each
transducer to minimise insertion loss due to the impedance mismatch be-
tween the transducer face and air. This transducer assembly is modelled and
evaluated in [10].

6.2. A0 Lamb Wave Generation

When the transmitter is excited the axial mode produces a planar wave
radiating from the front face (as shown in Figure 11). Efficient matching
ensures most of the energy radiates from the front of the transducer [10].
Also, if a 1-3 piezocomposite is used, the composite nature of the transducer
helps to damp out unwanted radial modes. The angle θ was selected to phase
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match the transducer output to the desired Lamb wave mode as described
by Snell’s Law. For propagation in a 1mm thick aluminium plate at 600 kHz
the appropriate value of θ i =9.5 degrees (cph = 2060 m/s).

Figure 11: Air-coupled generation of A0 Lamb mode in aluminium sample plate

A ray tracing technique was used to model the excitation of the specimen
under test. For each LISA node under the transmitter, an excitation was
applied at an angle perpendicular to the transmitter. The air channel was
modelled as a delay (assuming no attenuation). Nodes near the base of the
transducer were excited first, with the delay increasing with distance from
the base. Note it could take several cycles before the whole area under the
transducer was excited. Incorporating a model of the near field [28] fell
outwith the scope of this work, but the loss in accuracy is minimal since
slight variations in the amplitude across the excitation wave are averaged
over the Lamb wave as it passes through the excitation region. Since the
transducer beam interferes with the plate well inside the near field beam
spread in negligible.

Figure 12: Simulation of air-coupled A0 generation in a 1mm thick aluminium plate

Figure 12 shows an example simulation of a 10mm circular transducer
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placed over a 1mm aluminium plate, the Figure illustrates the amplitude of
the out-of-plane displacement. The transducer was excited with a 600kHz, 3
cycle tone burst and was set at an angle of 9.5o facing forward (angle in XY
plane = 0o). The A0 wavepacket can be clearly seen.

6.3. A0 Lamb Wave Measurement

Snell’s law works reciprocally, so for matched reception, the angle of the
receiver must be the same as that of the transmitter, allowing the wave to
recombine constructively on the receiver’s face. Again a ray tracing approach
was adopted, where only nodes that fell under the transducers field of view
were considered. For each node the component of displacement normal to
the receiver face was added to the receiver with a time delay corresponding
to the perpendicular distance between the node and transducer face. At each
time-step the transducer model integrated over all inputs to produce a single
output.

7. Interfacing the Linear Systems Model and LISA

The LISA model simulates the displacement field generated by elastic
wave propagation in the sample under investigation, whereas the linear sys-
tems model approximates the pressure field output from a transmitter excited
by a voltage, or the voltage generated by the incident wave on the receiver’s
face. In order to interface the two models the excitation pressure wave must
be converted to a displacement excitation for LISA and the resulting displace-
ment wave under the receiver must be converted back to a pressure wave.
Equation 15 can be used to perform this conversion, where Z is the acoustic
impedance of the plate and vnode is the velocity of the point in question.

P = Zvnode (15)

vnode can be calculated by differentiating the displacement w.

Pt = Z(
wt − wt−1

τ
) (16)

The last thing that has to be considered is the impedance mismatch
between the plate and surrounding air. The transmission coefficient can be
estimated from Equation 17.

TP =
Pt

Pi

=
2Z2

Z1 + Z2

(17)
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Pt and Pi are the transmitted and incident pressure waves respectively travel-
ling into a material with acoustic impedance Z2 from a material with acoustic
impedance Z1 at normal incidence. The excitation pressure used to calculate
the excitation displacement in equation 15 is calculated by multiplying the
output from the transmitter model by the transmission coefficient for air to
aluminium. The pressure used as the input to the receiver model is first
calculated by equation 15 then multiplied by the transmission coefficient for
aluminium to air.

7.1. Simulation Results
Figure 13 shows a full simulation of a time domain pitch-catch experi-

ment between angled transducers, incorporating both LISA and the Linear
Systems Transducer model compared with experimental measurements. The
excitation was a 3 cycle tone burst of 10V at 600kHz and the separation
between the transducers was 100mm. The transducers were the same as
those described in Section 6.1 and had an active area of 30mm x 30mm. The
transmitter was driven directly from the 50Ω output of an Agilent 33220A
function generator. The receiver was amplified by 40dB using a Olympus
5670 preamplifier and connected to the 1MΩ input of an Agilent 54624A
oscilloscope.

Figure 13: Time domain comparison between simulated response (dashed line) and ex-
perimentally measured response (solid line) of air-coupled A0 generation, propagation and
reception in 1mm thick aluminium plate

Figure 14 shows five 3D pitch-catch simulations between 10mm diameter
angled transmitter and receivers. For clarity the diagrams are drawn in 2D.
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The plate was 125mm x 125mm x 1mm. The transmitter was positioned at
x = 62.5mm, y = 25mm at an angle of 9.8 degrees to the surface. In case
I a point probe was placed to measure the out-of-plane displacement on the
top surface at x = 62.5mm, y = 100mm. In case II an angled receiver was
placed in the same location as the probe positioned to face the transmitter
and held at 9.8 degrees (XZ). In case III, the receiver was rotated about to
face away from the transmitter. Case IV and V are the same as case II, with
the addition of void regions in the model to simulate defects. In Case IV the
defect is a 0.5 mm deep surface breaking void which is 3mm long in the Y
direction, it is 10mm wide in the X direction and positioned 80mm in from
the plate edge ‘C’ (62.5mm, 80mm and 0.75mm in X, Y and Z respectively).
In Case V the defect is extended to be 10mm long in the Y direction and is
positioned in the centre of the plate thickness ( 62.5mm, 80mm and 0.5mm
in X, Y and Z respectively).

Figure 15 shows the normalised output for each case (in cases III - IV,
the amplitudes are normalised against case II). In case I, four wave packets
are visible which represent the initial wave passing under the probe (A-B),
the reflection from the back edge (A-C-B), the reflection from the back edge
reflected off the front edge beside the transducer (A-C-D-B) and finally the
packet reflected again off the back edge (A-C-D-C-B). The probe is assumed
to be ideal so only the transmitters transfer function is included. In cases II -
V a narrow band piezocomposite receiver is used which causes the signals to
take longer to decay. In case II only the first and third packets are visible since
the receiver is only sensitive to incident waves. This directional sensitivity is
also apparent in case III where only the back wall reflections are visible. In
cases IV and V the effect of the defect can be clearly seen, the direct packet is
heavily attenuated, there is also a slight delay in the peak caused by some of
the energy travelling around the defect. It should be noted that the system
is sensitive to voids that are not 100% through the thickness which may be
obscured in visual inspection.

Figure 16 shows a simulated scan of a 250mm × 250mm 1mm thick
aluminium defect with two artificial defects. The transducers had a 10mm
diameter and were driven at 600kHz. The defects were 100% through the
plate width and were located at (90mm, 170mm) and (150mm ,115mm) with
dimensions of 10mm × 10mm and 10mm × 2mm respectively. The second
defect was rotated by 30o relative to the x axis. A single sensing agent
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scanned in pulse-echo configuration from (30mm, 30mm) to (220mm, 30mm)
in 5mm intervals. This required 39 individual simulations which could be run
in parallel over several computers as there was no need for the simulations
to be run sequentially. The results are shown as a 2D grayscale plot of the
envelope detected receiver time traces. The ‘Y’ axis was converted from time
to distance using the group velocity of the A0 mode in 1mm aluminium. The
result of the scan is shown in Figure 17, the image was interpolated linearly
by a factor of 5 in the ‘X’ direction to improve the quality of the image. The
10mm × 10mm defect is clearly visible whereas the 10 × 2mm defect has
reduced visibility due to the incident Lamb wave being reflected away from
the transducer. The back wall is clearly visible with two shadows caused by
the defects.

8. Conclusions

A full simulation for an air-coupled ultrasonic scanner for deployment on
mobile robotic platforms has been presented and validated against experi-
mental measurements. Generation and reception of ultrasonic Lamb waves
was accomplished using air-coupled piezocomposite transducers whose re-
sponse was modelled using a previously described [9] Linear Systems Model.
Propagation in sample plates was simulated using a the LISA model. This
was used instead of conventional finite element modelling for two reasons.
Firstly to be useful for modelling adaptive inspection strategies implemented
by the sensing agents the execution speed of the code is critical. For complex
geometries, high calculation times would make it unfeasible for optimisation
over different propagation paths to be considered. Secondly the LISA code
could be combined with both the linear systems model of the transducer
Tx/Rx response and the ray tracing approach adopted to couple between
the linear systems model and LISA. The LISA propagation model was ex-
tensively validated by comparison of Lamb wave propagation to both a com-
mercial simulation package and a numerical solution to the Rayleigh/Lamb
frequency equations.

The complete model was coded in C++ and could be run interactively us-
ing a custom GUI running in Windows or in batch mode in either Windows
or Linux. The batch code could be configured to run on a High Perfor-
mance Computer (HPC) allowing multiple simulations to be run in parallel
on separate nodes. This is particularly effective for parameter sweeps and
for tomographic imaging which requires a series of projections and was used
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to create Figure 17. Since the code is cross platform it can be compiled to
run on the sensing agent’s embedded Linux computer and although limited
by onboard memory, simple simulations can be run. Future work will look
at distributing the simulation over several sensing agents or alternatively to
implement a system where the sensing agent can request a simulation over
WiFi which is routed over the internet to a computer offsite that actually
runs the simulation. Running the simulation on the sensing agent reduces
power required for communications, but increases power required for onboard
computation leading to an optimum depending on the simulation complexity.

Future work will consider optimisation of robot scanning strategies for to-
mographic imaging as possible implementation of LISA for real-time adaptive
modification of inspection strategies distributed across the fleet.
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Figure 14: Simulation of pitch-catch ray tracing model combined with LISA

28



−1

0

1

 

 
Case I

−1

0

1

 

 
Case II

−1

0

1

N
or

m
al

is
ed

 A
m

pl
itu

de

 

 
Case III

−1

0

1

 

 
Case IV

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−4

−1

0

1

Time(s)

 

 
Case V

A−B A−C−B

A−C−D−B

A−C−D−C−B

A−E A−C−D−E

A−C−E

A−C−D−C−E

A−E A−C−F−E A−F−D−E

A−C−F−C−F−E

A−C−F−C−F−E

A−F−D−EA−C−F−EA−E
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Figure 16: Simulation setup of a 3D pulse-echo inspection using a single remote sensing
agent
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Figure 17: Results of a 3D pulse-echo inspection using a single remote sensing agent
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