Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Sensitivity analysis and parameter estimation of signal transduction pathways model

Jia, J.F. and Yue, H. (2009) Sensitivity analysis and parameter estimation of signal transduction pathways model. In: 7th Asian Control Conference, 2009 (ASCC 2009), 2009-08-27 - 2009-08-29.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Due to the high nonlinearity in system models, the large number of kinetics parameters involved, the inadequate measurement data in experiments and the noise pollution, etc., parameter estimation is therefore a challenging problem in systems biology. In this work, sensitivity analysis of model output with respect to model parameters is evaluated using Latin hypercube sampling method. Then, a new objective function is proposed based on the probability density function (PDF) of the system output, and particle swarm optimization is used to optimize the objective function through particles' cooperation and evolution. Taking NF-kappaB signal pathways model as an example, this method is applied to rank importance of parameters and to estimate the unknown sensitive parameters for complex signal transduction pathways model. The simulation results show the effectiveness of this new algorithm.