Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel

Uppal, M. and Liu, Z. and Stankovic, V. and Xiong, Z. (2009) Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel. IEEE Transactions on Signal Processing, 57 (11). pp. 4467-4481. ISSN 1053-587X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper studies compress-forward (CF) coding with BPSK modulation for the half-duplex Gaussian relay channel. In CF relaying, Wyner-Ziv coding is applied at the relay to exploit the joint statistics between signals at the relay and the destination. We propose Slepian-Wolf coded nested scalar quantization (SWCNSQ) for practical Wyner-Ziv coding at the relay. We first provide the achievable rate of SWCNSQ based CF relaying as a performance benchmark, and then present a practical code design using low-density parity-check (LDPC) codes for error protection at the source, and nested scalar quantization plus irregular-repeat accumulation (IRA) codes for CF coding at the relay. The degree distributions of the LDPC and IRA codes are optimized using extrinsic information transfer charts and Gaussian approximation. Under discretized density evolution for asymptotically large block lengths, our optimized code design operates 0.11-0.21 dB away from the SWCNSQ limit for CF relaying. Simulations with LDPC/IRA codes of length 2 times 105 bits show a performance gap of 0.27-0.38 dB from the achievable rate.