Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The partition of temporal gene expression sequence using discrete wavelet transform for modelling

Yu, L. and Marshall, S. (2009) The partition of temporal gene expression sequence using discrete wavelet transform for modelling. In: IEEE Workshop on Genomic Signal Processing, 1900-01-01.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Switch-like phenomena within biological systems complicate the inference of gene regulatory networks. In this case, the difficulty comes from the fact that the model cannot be inferred from the mixed unknown contexts directly. It is necessary to identify the dasiapurepsila contexts from the data and given a dasiapurepsila context, subsequently infer a model. In this paper, a wavelet-based approach is addressed for the efficient partitioning of data into different biological contexts. The wavelet transform is a well known tool from the signal processing domain. This approach is able to identify the switches in the various conditions, with much lower computational cost than existing techniques. In order to demonstrate the proposed algorithm, experiments on the basis of simulated sequences and a synthetic sequence derived from real gene networks have been performed.