Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Off-broadside main beam design and subband implementation for a class of frequency invariant beamformers

Liu, W. and Weiss, S. (2009) Off-broadside main beam design and subband implementation for a class of frequency invariant beamformers. Signal Processing, 89 (5). pp. 913-920. ISSN 0165-1684

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The design of frequency invariant beamformers (FIBs) with off-broadside main beams is studied and it is shown that the required FIR filter length in this case should be much larger than the one with a broadside main beam. To reduce the computational complexity of such a beamformer and also improve its frequency invariant property at lower frequencies, two subband implementations are proposed. in the first one, the fullband array signals are split into subbands by a bank of analysis filters and the corresponding decimated subband signals form a series of subband arrays, Based on this standard subband structure, we then change the sensor spacings of different subband signals so that lower frequency bands have a larger spacing. which leads to a class of FIBs with scaled aperture with further improved performance at lower frequencies.