Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A 2D ultrasonic array design incorporating hexagonal-shaped elements for NDE applications

Dziewierz, J. and Ramadas, S.N. and Gachagan, A. and O'Leary, R.L. and Hayward, G. (2010) A 2D ultrasonic array design incorporating hexagonal-shaped elements for NDE applications. In: 2009 IEEE Ultrasonics Symposium, 2009-09-20 - 2009-09-23.

[img] PDF
IEEE_Symposium_2009_Dziewierz.pdf - Final Published Version

Download (470kB)

Abstract

Contemporary 2D Ultrasonic arrays suffer from low SNR and limited steering capabilities. Yet, there is a great desire in the industry to increase the operational frequency, in order to enhance their volumetric imaging resolution. State-of-the art arrays use an orthogonal matrix of rectangular elements as this is a natural step forward from the conventional 1D array structure. The objective of this work is to evaluate properties of triangular, rather than rectangular ceramic pillars in a 1-3 connectivity piezoelectric composite for application in a hexagonal-element 2D array. A 3MHz prototype device exploiting new hexagonal substructure have been manufactured. Measured mechanical cross-coupling level is -21.9dB between neighbouring hexagonal elements, providing validation of simulation result. Corroboration between measured and FE modelled device behaviour is demonstrated.