Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Some preliminary short-range transmission loss measurements for wireless sensors deployed on indoor walls

Sasloglou, Konstantinos and Darbari, Faisal and Glover, I.A. and Andonovic, I. and Stewart, R.W. (2008) Some preliminary short-range transmission loss measurements for wireless sensors deployed on indoor walls. In: 11th IEEE Singapore International Conference on Communication Systems, 2008. IEEE, pp. 129-132. ISBN 978-1-4244-2423-8

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Antenna characteristics and propagation are of fundamental importance to the coverage, capacity and service quality of all wireless communication systems. This paper presents short-range narrowband propagation measurements at 2.445 GHz for sensor network applications in an indoor environment. The effect of sensor node location on a wall has been determined for a pair of linearly polarised rectaxial antennas and a pair of ceramic patch antennas. Propagation loss has been measured as a function of (i) node separation (i.e. link length), (ii) node drop (i.e. vertical displacement of nodes below the ceiling) and (iii) node height (i.e. the perpendicular displacement of the nodes from the wall surface). It is observed that there is no significant effect of wall offset. In addition, the path loss exponent n generally increases with decreasing node drop.