Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks

Jochmann, Markus and Koop, Gary and Strachan, Rodney W. (2010) Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks. International Journal of Forecasting, 26 (2). pp. 326-347. ISSN 0169-2070

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper builds a model which has two extensions over a standard VAR. The first of these is stochastic search variable selection, which is an automatic model selection device that allows coefficients in a possibly over-parameterized VAR to be set to zero. The second extension allows for an unknown number of structural breaks in the VAR parameters. We investigate the in-sample and forecasting performance of our model in an application involving a commonly-used US macroeconomic data set. In a recursive forecasting exercise, we find moderate improvements over a standard VAR, although most of these improvements are due to the use of stochastic search variable selection rather than to the inclusion of breaks.