Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A microwave dielectric biosensor based on suspended distributed MEMS transmission lines

Li, L. and Uttamchandani, D.G. and , Scottish Funding Council under Glasgow Research Partnership in E and , Royal Society Research (Funder) (2009) A microwave dielectric biosensor based on suspended distributed MEMS transmission lines. IEEE Sensors Journal, 9 (12). pp. 1825-1830. ISSN 1530-437X

[img]
Preview
PDF (senj.pdf)
senj.pdf

Download (1MB) | Preview

Abstract

Design and characterization of a miniature microwave dielectric biosensor based on distributed microelectromechanical systems (MEMS) transmission lines (DMTL) is reported in this paper. The biosensor has been realized by bonding the DMTL device with an acrylic fluidic channel. In order to demonstrate the sensing mechanism, the sensor is used to detect the small variation of the concentration of aqueous glucose solutions by measuring the electromagnetic resonant frequency shift of the device. It is observed from the results that the second notch of the reflection coefficient (S-11) varies from 7.66 to 7.93 GHz and the third notch of the reflection coefficient varies from 15.81 to 15.24 GHz when the concentration of the glucose solution ranges from 0 to 347 mg/ml, which indicates that higher order notches have higher sensitivities if looking at the absolute change in frequency.