Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A microwave dielectric biosensor based on suspended distributed MEMS transmission lines

Li, L. and Uttamchandani, D.G. and , Scottish Funding Council under Glasgow Research Partnership in E and , Royal Society Research (Funder) (2009) A microwave dielectric biosensor based on suspended distributed MEMS transmission lines. IEEE Sensors Journal, 9 (12). pp. 1825-1830. ISSN 1530-437X

[img]
Preview
PDF (senj.pdf)
senj.pdf

Download (1MB) | Preview

Abstract

Design and characterization of a miniature microwave dielectric biosensor based on distributed microelectromechanical systems (MEMS) transmission lines (DMTL) is reported in this paper. The biosensor has been realized by bonding the DMTL device with an acrylic fluidic channel. In order to demonstrate the sensing mechanism, the sensor is used to detect the small variation of the concentration of aqueous glucose solutions by measuring the electromagnetic resonant frequency shift of the device. It is observed from the results that the second notch of the reflection coefficient (S-11) varies from 7.66 to 7.93 GHz and the third notch of the reflection coefficient varies from 15.81 to 15.24 GHz when the concentration of the glucose solution ranges from 0 to 347 mg/ml, which indicates that higher order notches have higher sensitivities if looking at the absolute change in frequency.