Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The piston effect as a means to measure near-critical bulk viscosity

Carles, P. and Dadzie, K. and Zhong, F. (2003) The piston effect as a means to measure near-critical bulk viscosity. In: UNSPECIFIED.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Fluids close to their liquid-vapour critical point exhibit peculiar properties which have strong consequences on their hydrodynamics. Considerable experimental work has been conducted to measure the divergence of near-critical fluid’s properties close to the critical point. But owing to their peculiar hydrodynamics, some of these quantities have proved difficult to access. One way out of this limitation has been the use of microgravity experiments, in which the effects of gravity could be suppressed. But even in the absence of gravity, near-critical fluids are subjected to very strong dynamical phenomena. In particular, it has been observed that the heat transfer in fluids near the liquid-vapour critical point is governed not only by diffusion, convection and radiation, but also by a thermo-mechanical coupling called the Piston Effect, discovered in the early 90s. Among the least known properties close to the critical point is the bulk viscosity, which is expected to exhibit a very strong critical divergence. Despite this divergence, most existing theoretical models of the Piston Effect are based on non-viscous equations. Using equations recently developed for the hydrodynamics of viscous nearcritical fluids, we propose a new indirect way of measuring bulk viscosity close to the critical point. This method is based on the use of a carefully monitored Piston Effect, acting as a probe and triggering a dynamic response in which the signature of bulk viscosity can be measured.