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In this paper we consider periodic orbits of a solar sail in the Earth-Sun re-
stricted three-body problem. In particular, we consider orbits which are high
above the ecliptic plane, in contrast to the classical Halo orbits about the
collinear equilibria. We begin with the Circular Restricted Three-Body Prob-
lem (CRTBP) where periodic orbits about equilibria are naturally present at
linear order. Using the method of Lindstedt-Poincaré, we construct nth or-
der approximations to periodic solutions of the nonlinear equations of motion.
In the second part of the paper we generalize to the Elliptic Restricted Three-
Body Problem (ERTBP). A numerical continuation, with the eccentricity, e, as
the varying parameter, is used to find periodic orbits above the ecliptic, start-
ing from a known orbit at e = 0 and continuing to the required eccentricity of
e = 0.0167. The stability of these periodic orbits is investigated.

Keywords: Periodic orbits, solar sail, elliptic three body problem

1. Introduction

While the concept of the solar sail has been with us for some time, it
is only with recent advances in materials and structures that their use is
being seriously considered. A solar sail consists essentially of a large mirror,
which uses the momentum change due to photons reflecting off the sail for
its impulse. A natural setting to consider the orbital dynamics of a solar
sail is the restricted 3-body problem, with the Earth and Sun as the two
primaries. We begin here with the analysis in the solar sail circular restricted
three body problem (CRTBP) and later generalize to the elliptic restricted
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three body problem (ERTBP).
There has been some work already carried out regarding solar sails in

the 3-body problem. McInnes1 first described the surfaces of equilibrium
points. In Baoyin and McInnes,2 the authors describe periodic orbits about
equilibrium points in the solar sail three body problem, however they con-
sider only equilibrium points on the axis joining the primary masses, cor-
responding to artificial Lagrange points (analogous to the classical ‘halo’
orbits3,4).

In this paper we examine the solutions to the linearised equations of
motion and discuss their stability in the CRTBP. We find that periodic
orbits exist at linear order, and we use these linear solutions to find higher
order approximations to periodic solutions of the non-linear system using
the method of Lindstedt-Poincaré.5,6 These approximate orbits are then
fine-tuned using a differential corrector to find initial conditions that yield
periodic solutions to the full non-linear model.5

Following this we generalize the problem to the solar sail ERTBP7 in
the Earth-Sun system. A numerical continuation, with the eccentricity e

as the varying parameter, is used to find periodic orbits above the ecliptic,
starting from a known orbit in the CRTBP (e = 0) and continuing to the
required eccentricity e = 0.0167. The stability of some periodic orbits above
the ecliptic are investigated and it is shown that they are unstable and that
a bifurcation occurs at e = 0.

2. Equations of motion in the rotating frame

We follow the conventions set out in McInnes.1 We consider a rotating coor-
dinate system in which the primary masses are fixed on the x-axis with the
origin at the centre of mass, the z-axis is the axis of rotation and the y-axis
completes the triad. We choose our units to set the gravitational constant,
the sum of the primary masses, the distance between the primaries, and
the magnitude of the angular velocity of the rotating frame to be unity. We
shall denote by µ = 3 × 10−6 the dimensionless mass of the smaller body
m2, the Earth, and therefore the mass of the larger body m1, the Sun, is
given by 1− µ (see Figure 1).

Denoting by r, r1 and r2 the position of the sail w.r.t. the origin, m1

and m2 respectively, the solar sail’s equations of motion in the rotating
frame are

d2r

dt2
+ 2ω × dr

dt
= a− ω × (ω × r)−∇V ≡ F , (1)

with ω = ẑ and V = −[(1−µ)/r1 +µ/r2] where ri = |ri|. These differ from
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the classical equations of motion in the CR3BP by the radiation pressure
acceleration term

a = β
(1− µ)

r2
1

(r̂1.n)2n, (2)

where β is the sail lightness number, and is the ratio of the solar radiation
pressure acceleration to the solar gravitational acceleration. Here n is the
unit normal of the sail and describes the sail’s orientation. We define n in
terms of two angles γ and φ w.r.t. the rotating coordinate frame,

n = (cos(γ) cos(φ), cos(γ) sin(φ), sin(γ)), (3)

where γ, φ are the angles the normal makes with the x-y and x-z plane
respectively (see Figure 1).

Equilibria are given by the zeroes of F in (1). We find a 3-parameter
family of equilibria, as described in McInnes.1 These are found by specifying
the lightness number β and the sail angles γ and φ, and solving F = 0.
To simplify facilitate the search for orbits we initially assume φ = 0 so the
equilibrium (and sail normal) is in the x-z plane. In Figure 2 we show some
of the equilibria near the Earth for low β values. Practically speaking, while
a β value of about 0.3 − 0.4 is considered within the realm of possibility
of current engineering, to put the analysis in this paper well within the
near-term we will consider very modest β values of about 0.05.

3. Linearised system

We linearise about the equilibrium point (in the x-z plane) by making the
transformation r → re + δr, Taylor expanding F about re, and neglecting

x

z

xy

r1

r2

r

n

γ

m2

m1

Sail

Fig. 1. The rotating coordinate frame and the sail position therein. The angles γ and
φ which the sail normal makes with respect to the rotating frame are also shown.
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Fig. 2. Surfaces of equilibrium points in the xe-ze parameter space. Each curve is
specified by a constant value of β, and the position of the equilibrium point along the
curve is given by γ. The grey shaded regions denote areas where equilibrium is not
possible.

the terms quadratic in δr. We assume the orientation of the sail will remain
fixed under perturbation of the sail position, in which case γ, φ and β are
constants. Letting δr = (δx, δy, δz)T and X = (δr, δṙ)T , our linear system
is Ẋ = AX with

A =
(

0 I

M Ω

)
, M =




a 0 b

0 c 0
d 0 e


 , Ω =




0 2 0
−2 0 0
0 0 0


 , (4)

where a dot denotes differentiation w.r.t. t,

a = (∂xF x)|e, b = (∂zF
x)|e, c = (∂yF y)|e, d = (∂xF z)|e, e = (∂zF

z)|e,
and b 6= d. Here F a denotes the a-th component of F, and M is sparse due
to ye = 0.

The key difference between this analysis and the classical orbits about
the collinear Lagrange points is the term d 6= 0, which appears precisely
because we are linearising about an equilibrium point with ze 6= 0. This
means we cannot decouple the z-equation.

The characteristic equation of the Jacobian A is bi-cubic (whose cor-
responding cubic equation has real roots); this means the eigenvalues of
A are either in pairs of pure imaginary conjugates or real and of opposite
sign. Thus equilibria in the x-z plane will have the dynamical structure of
centres and saddles, akin to the classical collinear Lagrange points.

If we label the eigenvectors associated with λai (a = 1, 2) as ua + wai,
and the eigenvectors associated with λr,−λr as v1,v2, then the general
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solution of the linear system (4) is

X(t) = cos(λ1t)
[
Au1 + Bw1

]
+ sin(λ1t)

[
Bu1 −Aw1

]

+cos(λ2t)
[
Cu2 + Dw2

]
+ sin(λ2t)

[
Du2 − Cw2

]

+Eeλrtv1 + Fe−λrtv2. (5)

We see that due to the coupling of the z-equation in the linear system, which
in turn is due to our choice of ze 6= 0, the linear order solution naturally
contains periodic solutions in both linear frequencies. By setting E = F = 0
we may switch off the real modes, and by setting either A = B = 0 or
C = D = 0 we have periodic solutions in the frequency of our choice.

4. High-order approximations to periodic orbits

The linear solutions given in the previous section will only closely approx-
imate the motion of the sail given in (1) for small amplitudes. For larger
amplitude periodic orbits, we compute high order approximations using
the method of Linstedt-Poincaré.5 This procedure is well known and is
described in the literature, for example.3,4

We let ε be a perturbation parameter and expand each coordinate as
x → xe + εx1 + ε2x2 + . . . etc. We rescale the time coordinate τ = ωt with
ω = 1 + εω1 + . . ., and group together the powers of ε in the high-order
Taylor expansion of F. We choose our linear solution to be

x1 = kAy cos(λτ + ξ), y1 = Ay sin(λτ + ξ), z1 = mAy cos(λτ + ξ),(6)

where λ can be λ1 or λ2, k, m are given in terms of components of the
eigenvectors and Ay, ξ are free parameters. We use these linear solutions to
build up non-linear approximations to periodic orbits one order at a time
in the following way:

At each order of ε, the system to be solved will be

x′′n − 2y′n − axn − bzn = g1(xn−1, yn−1, zn−1, xn−2, . . .)

y′′n + 2x′n − cyn = g2(xn−1, yn−1, zn−1, xn−2, . . .)

z′′n − dxn − ezn = g3(xn−1, yn−1, zn−1, xn−2, . . .), (7)

where prime denotes differentiation w.r.t. τ . The left hand side is the same
form as the linear system (4), and on the right hand side the previous
orders’ solutions act as forcing terms. We use the freedom in ωn to switch
off the resonant or secular terms in the inhomogeneous part, that is those
components on the right hand side of the form (6), and what remains is a
series of trigonometric subharmonics up to order n.
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In calculating the solution at nth order, we find two sets of solutions
depending on whether n is even or odd. When n is even, the nth order
solutions have the form (letting T = λτ + ξ)

xn =pn0 + pn2 cos(2T ) + . . . + pnn cos(nT ),

yn = qn2 sin(2T ) + . . . + qnn sin(nT ),

zn =sn0 + sn2 cos(2T ) + . . . + snn cos(nT ), (8)

with ωn−1 = 0. When n is odd, the solutions at nth order have the form

xn = pn3 cos(3T ) + . . . + pnn cos(nT ),

yn = qn1 sin(T ) + qn3 sin(3T ) + . . . + qnn sin(nT ),

zn = sn1 cos(T ) + sn3 cos(3T ) + . . . + snn cos(nT ), (9)

and ωn−1 solves

2λβn1

(c + λ2)
+

bγn1

(e + λ2)
− αn1 = 0. (10)

Here αnj , βnj and γnj are the coefficients of the cos, sin and cos terms in
the functions g1, g2 and g3 respectively at order n given in (7), and the
coefficients pnj , qnj and snj are given by

−(a + j2λ2)pnj − 2jλqnj − bsnj − αnj = 0,

qnj =
−2jλpnj − βnj

(c + j2λ2)
, snj =

−dpnj − γnj

(e + j2λ2)
, (11)

with the exception of qn0 = 0 and pn1 = 0.
With these high order approximations, we may find approximate initial

data from which to integrate the system of equations (1). However these will
not evolve to exactly periodic trajectories, as they are only approximations
to periodic solutions. Thus we must define a differential corrector with
which to adjust the initial data so as to close the orbit.

With the high order approximations and the differential corrector,5 we
may integrate the full nonlinear system of equations (1) to find large am-
plitude periodic orbits. An example of this for one family of periodic orbits
is shown in Figure 3.
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Fig. 3. A family of orbits with β = 0.05. Each orbit has the same amplitude and is about
a different equilibrium point along the β level curve shown in Figure 2, each equilibrium
point being defined by a different γ value. For reference the Earth (to scale) and L1 are
shown.

5. Equations of motion for the Solar Sail ERTBP

We will consider the solar sail ERTBP7 where the equations of motion are
expressed in the rotating-pulsating frame:8

x′′ − 2y′ = 1
1+e cos f

(
∂Ω
∂x + ax

)

y′′ + 2x′ = 1
1+e cos f

(
∂Ω
∂y + ay

)

z′′ + z = 1
1+e cos f

(
∂Ω
∂z + az

) (12)

where

Ω =
1
2
(x2 + y2 + z2) +

(1− µ)
|r1| +

µ

|r2|
and where ax, ay, az are the components of the solar sail acceleration
a = (ax, ay, az)T and where (·)′ denotes differentiating with respect to
the true anomoly f . The pulsating-rotating frame is convenient as the true
anomoly appears in the equations of motion as the independent variable
and therefore we do not need to integrate Kepler’s equations. We note that
when e = 0 in (12) the equations are the equations of motion for the solar
sail in the CRTBP. Therefore, we can treat the eccentricity, e, as a con-
tinuation parameter from a known periodic orbit in the CRTBP (e=0 in
(12)). In the solar sail ERTBP the time appears explicitly in the equations
of motion through the true anomaly f . Therefore, the differential equations
(12) are non-autonomous. As the true anomaly f is periodic of period 2πk

where k is an integer, any periodic orbit will also have to be of period 2πk.
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We can therefore continue from the 1 year periodic orbit highlighted in
Figure 3 at e = 0 to the reuired e = 0.0167.

6. Periodic Orbits in the solar sail ERTBP

The continuation algorithm used to find periodic orbits above the ecliptic
in the ERTBP is based on a monodromy variant of Newton’s method.9 The
initial orbit which will serve as a starter in the numerical continuation is
given in the solar sail CRTBP5 (e = 0). If e is incremented by a suitably
small value, the trajectory remains close enough for Newton’s method to
converge to a periodic orbit. This process is repeated until a closed orbit is
found with the required e = 0.0167. In this section we apply the continua-
tion to a 1 year periodic orbit above the ecliptic in the solar sail CRTBP.

The Newton method starts with an orbit X(t) initialized at t = 0 on a
surface of section. In our case we require that the orbit be exactly 1 year
so the return map in the rotating-pulsating frame is defined by a T-map of
period f = 2π. It is assumed that the orbit is close to a natural periodic
orbit Γ(t). The Newton method provides an iterative improvement to the
choice of initial conditions for a periodic orbit:9

X∗(0) = X(0) + (I −M)−1[X(T )−X(0)] (13)

where X∗(0) is the improved initial condition and M is the monodromy
matrix. One of the problems encountered with this Newton method is that
the determinant of (I − M) maybe zero and therefore the inverse is not
well defined. In addition the determinant of (I−M) may be very small and
in these cases convergence of iterations may become poor. However, this
problem is resolved by using the Moore-Penrose pseudo inverse. The imple-
mentation of Newton’s method relies on the computation of the monodromy
matrix as follows:

Let Γ(t) denote a periodic with period T = 2π which satisfies the condi-
tion Γ(T ) = Γ(0), by letting x = X(t)−Γ(t), we may linearize the nonlinear
system about this periodic orbit, resulting in the variational equations

ẋ = A(t)x

where

A(t) = A(t + T ) =
∂f

∂X

∣∣∣∣
X(t)=Γ(t)

Recasting the variational equations in terms of the state transition ma-
trix (or principle fundamental matrix) Φ = ∂X(t)/∂X(0), we have

Φ̇ = A(t)Φ, Φ(0) = I
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where Φ is a 6 × 6 matrix. Two periodic orbits are illustrated in Figure 4
for e = 0 and e = 0.0167

0.9895 0.99 0.9905
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x 10
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Fig. 4. Periodic Orbits in the rotating-pulsating frame: the thin line orbit is for e = 0
and the thick lined orbit is for e = 0.0167

7. Stability of periodic orbits in the Solar Sail RTBP

Additionally, we consider the linear stability of these periodic orbits in
the nonlinear system. The stability of periodic orbits is determined using
Floquet theory10 and depends on the behavior of the eigenvalues of the
monodromy matrix M . The eigenvalues of M will be denoted by

λ1, λ2, λ3, λ4, λ5, λ6

To these eigenvalues λi correspond the characteristic (Floquet) exponents
αi defined by

λi = eαiT

The orbit is stable at linear order if and only if the real parts of all the
characteristic exponents are less than or equal to zero. In the circular case
e = 0 the differential equations are autonomous and it is well known that
one of the characteristic exponents of every periodic solution will be zero.11
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The eigenvalues of the periodic orbits above the ecliptic6 indicate that the
orbits are unstable and of the form:

{1, 1, λi, λ̄i, λr, 1/λr}
where the bar denotes complex conjugacy. The unit eigenvalues appear as
the solar sail CRTBP is an autonomous system11 therefore the character-
istic exponents are of the form

{0, 0, αi, ᾱi,±αr}
However, in the elliptic case, t is contained explicitly in the equations of
motion, through the true anomaly f . The form of the eigenvalues in the
elliptic case are:

{λj , λ̄j , λi, λ̄i, λr, 1/λr}
and the characteristic exponents are of the form

{αj , ᾱj , αi, ᾱi,±αr}
which is consistent with periodic orbits in the the classical ERTBP.12 This
implies that in the solar sail ERTBP there is a bifurcation at e = 0, in the
sense that the eigenvalues change form. However, in each case the periodic
orbit is unstable and requires active control to maintain the solar sail on
the orbit.

8. Conclusion

In this paper we have considered periodic orbits above the ecliptic of a solar
sail in the Earth-Sun restricted three-body problem. We begin with the
Circular Restricted Three-Body Problem (CRTBP) where periodic orbits
about equilibria are naturally present at linear order. Using the method
of Lindstedt-Poincaré, we construct nth order approximations to periodic
solutions of the nonlinear equations of motion and use these to compute high
amplitude orbits above the ecliptic plane. In the second part of the paper
we generalize to the Elliptic Restricted Three-Body Problem (ERTBP). A
numerical continuation, with the eccentricity, e, as the varying parameter,
is used to find periodic orbits of 1 year above the ecliptic, starting from a
known orbit at e = 0 and continuing to the required eccentricity of e =
0.0167. The stability of these periodic orbits is investigated and they are
shown to be unstable. Additionally it is shown that a bifurcation occurs at
e = 0 in that the eigenvalues of the monodromy matrix change form, but
the orbits remain unstable.



May 9, 2008 9:30 WSPC - Proceedings Trim Size: 9in x 6in newperiodicorbits

11

Acknowledgments

This work was funded by grant EP/D003822/1 from the UK Engineering
and Physical Sciences Research Council (EPSRC).

References

1. McInnes, C. R., ‘Solar sailing: technology, dynamics and mission applications’.
Springer Praxis, 1999.

2. Baoyin, H., McInnes, C., ‘Solar sail halo orbits at the Sun-Earth artificial L1

point’. Celestial Mechanics and Dynamical Astronomy, No. 94, pp. 155-171,
2006.

3. Richardson, D. L., ‘Halo orbit formulation for the ISEE-3 mission’. Journal of
Guidance and Control, Vol. 3, No. 6, pp. 543-548, 1980.

4. Thurman, R., and Worfolk, P., ‘The geometry of Halo orbits in the circular
restricted three-body problem’. Technical report GCG95, Geometry Center,
University of Minnesota, 1996.

5. Waters, T. J., McInnes, C. R., ‘Periodic Orbits above the Ecliptic in the
Solar sail Restricted Three-body problem’. Journal of Guidance, Control and
Dynamics, Vol. 30, No. 3, May-June, 2007.

6. Waters, T. J., McInnes, C. R., ‘Solar sail dynamics in the three-body problem:
Homoclinic paths of points and orbits’. International Journal of Non-Linear
Mechanics, 2008.

7. Baoyin, H., McInnes, C.R., ‘Solar sail equilibria in the elliptical restricted
three-body problem’. Journal of Guidance, Control and Dynamics, Vol. 29,
No. 3, pp. 538-543, 2006.

8. Szebehely, V., ‘Theory of Orbits: The restricted problem of three bodies’.
Academic Press, New York, 1967.

9. Marcinek, R., Pollak, E., ‘Numerical methods for locating stable periodic or-
bits embedded in a largely chaotic system’. Journal of Chemical Physics, 100,
8, pp. 5894-5904, 1994.

10. Grimshaw, R., ‘Nonlinear ordinary differential equations’. Blackwell Scientific
Publications, 1990.

11. Whittaker, E. T., ‘A treatise on the analytical dynamics of particles and rigid
bodies’. Cambridge University Press, 1999.

12. Broucke, R., ‘Stability of Periodic Orbits in the Elliptic, Restricted Three-
body Problem’. AIAA Journal, Vol. 7, No. 6, June 1969.


